
ODC

SQL API

HTTP API

Java API

Cluster-Consistent
Time
A proprietary mechanism for providing
reliable snapshot time using a distributed
clock. Read time and write time are
separately authored. Write time > read time
always. The wall clock time between ticks
may vary.

Fluent APIs
Queries can be expressed using a fluent Java interface or equivalent http call. The query engine
supports advanced features such nested ANDs and ORs as well as ordering of distributed
objects, with pagination.

SQL/Relational Projection
Native, distributed support for the major elements of the SQL
’99 dialect presented through a dynamically generated
schema. You can query all ODC entities from trades through
reference data in the familiar way, with data returned as rows
an columns rather than graphs.

Messaging as a System of
Record
Topic based messaging is used to provide a scalable, routable
persistence stream. All data written to ODC is recorded
through a write to one of the EMS servers via the Persistence
Topic. These events can be reinterpreted as necessary for
relational persistence, DR or even by clients.

Database Array
An array of relational databases provide historic
reporting for ad hoc users through direct (DAL)
access or a reporting tool like Spotfire. These run
asynchronously to the NoSQL store. The
database array can be any Oracle database,
even one that is owned by a you!

Late-Bound Schema
ODC holds data strictly in the form it was brought
in. The view presented to users, which matches
the bank’s Logical Model, is bound at runtime (i.e.
not persisted in the mapped form). The translation
process is externalised using a tool called Trace
Transformer, which is operated wholly and entirely
by the Analysis team. The releases of changes to
these mappings is not tied to software releases.

Immutable, Bi-temporal
Data with Business Keys
Data is recorded as a stream of immutable
entries. Can be accessed via the Latest
(using a business key) or Historic views
(which use a business key + version).

Data Held in Raw Form
All data is held the way it came in. It is not transformed
before it is persisted. This prevents issues that result from
‘taking a view’ on inbound data. Instead the view is taken
at runtime using the Late-Bound-Schema

Data written in
its raw format

Late-bound to Logical Model at runtime

Mapping is
externalised in Trace
Transformer

Data Quality Management
A team of data analysts monitor ODC data looking for places
where data does not join up from the different sources, for
example trades having invalid books, counterparties etc.

Join Engine
A write to ODC triggers a
distributed, recursive mechanism
for tracking reference data
connected to the trade being
written. This ripples from one
cache to another, flagging relations
(arcs) that exist in the active data
set. Such ‘connected’ entities are
then replicated to the query
engines so that joins can be
performed efficiently in memory,
without needing to replicate all
reference data for the purpose of
joins (or making multiple network
calls.

Notifications
All data in ODC is an event. Clients
can listen to data written to the
store using this to drive their
processing.

