

 © 2013 Thumbtack Technology, Inc. 1 of 1

NoSQL Failover Characteristics: Aerospike,
Cassandra, Couchbase, MongoDB
Denis Nelubin, Director of Technology, Thumbtack Technology
Ben Engber, CEO, Thumbtack Technology

Overview
Several weeks ago, we released a report entitled Ultra-High Performance NoSQL
Benchmarking: Analyzing Durability and Performance Tradeoffs. The purpose of that study was
to create a meaningful baseline for comparison across databases that take different approaches
to availability and consistency. For this paper, we continued this study to examine one of the
main reasons for using a NoSQL database — the ability to continue processing transactions in
the face of hardware or other node failures.

In particular, we tried to answer how well the theoretical promises made by these platforms, i.e.
that your system will continue to function normally in the face of such failures, performed in
practice. We took the same suite of databases from the first study and performed a similar set
of tests, but instead of focusing on raw performance numbers, we examined how failure and
recovery events affected the system as a whole.

The motivation for this study was that raw performance numbers are, with some exceptions, not
the primary motivation for picking a database platform. Horizontal scalability is the main design
consideration when building internet-scale applications, and scaling the database layer is the
most interesting part of the problem. Most discussions of NoSQL databases end up delving into
long discussions of the CAP theorem and how each database deals with it, but since these
systems are almost always running on a cluster, the real question is what consistency tradeoffs
are needed to achieve a given level of performance. Or, in more practical terms, “How much
data can I handle, how accurate is it, and what should I expect when something bad happens?”
Here we tried to answer that last question in concrete terms based on systems commonly in
production today.

The databases tested were Cassandra, Couchbase, Aerospike, and MongoDB. The hardware
configurations used were identical those in the prior study.1 We again used our customized
version of the Yahoo Cloud Serving Benchmark (YCSB) as the basis for the test.

1 For detailed information on the hardware and software configuration, please reference the original report
at http://thumbtack.net/solutions/ThumbtackWhitePaper.html.

 © 2013 Thumbtack Technology, Inc. 2 of 2

Test Description
The general approach to performing the tests was to bring each of these databases to a steady
state of transactional load. We then brought one of the cluster nodes down in an unfriendly
fashion and monitored the effects on latency and throughput, and how long it took for the
database to once again hit a stable state. After 10 minutes of downtime, we would bring a node
back into the cluster and perform system-specific recovery tasks. We then monitored the effect
on performance and availability over the next 20 minutes.

We first ran this test at 50% of each database’s maximum throughput (as measured in the prior
study.) Given our four-node cluster, this ensured that even with one node down there was
plenty of capacity to spare. An absolutely perfect system should show instantaneous failover
and no impact whatsoever from node failures or recovery. In reality, of course, the failure needs
to be detected, traffic rerouted, and ultimately data needs to be rereplicated when the node is
reintroduced. Ideally, the database should strive for as close to zero impact as possible while
supporting these features.

We also ran the same tests at 75% and 100% throughput on the cluster. At 75%, in theory
there would be sufficient capacity to run even with one of the four nodes down, but with zero
room to spare. This scenario represented an organization that invested in the minimal amount
of hardware to support a one node loss. The 100% scenario represented the worst case
scenario of a node failing when at capacity. We would expect performance to fall by at least
25% when we removed one of the nodes.

Other attributes we varied for the test were:

Replication Model: Both synchronous and asynchronous replication

Durability Model: Working set in RAM or written directly to disk

Workload: Both read heavy and balanced workloads

Failure Type: Simulated hardware failure versus network split brain2

In the interests of clarity, we did not include all the data we collected in our analysis. Many of
the variables had little effect on the overall picture, other than changing the raw numbers in
ways already discussed in the prior report.

The replication model did cause significant changes in how the cluster behaved under stress.
We ran synchronous replication scenarios for Aerospike, Cassandra, and MongoDB, but were
unable to get this to function for Couchbase. However, given our cluster size and the way
Cassandra and MongoDB handle node failures, these databases were unable to perform

2 kill -9, forced network failures, hardware power down, and other methods were tried and showed
similar behavior. We opted to use kill -9 as the baseline.

 © 2013 Thumbtack Technology, Inc. 3 of 3

transactions while a node was down. This would not be true when using a larger replication
factor, but was a necessary limitation to keep these results in the same baseline as our last
report.

Client & Workload Description
As mentioned above, we ran the tests using two scenarios to represent different consistency
levels of desired. The weak consistency scenario involved a data set that could fit entirely into
RAM and was asynchronously replicated to a single replica. This was the classic eventually
consistent model, and we expected it to provide the best results when dealing with node
failures. The strong consistency scenario relied on synchronous replication, and used a larger
data set.

Although we ran a broad swath of tests, we simplified the reporting of results for the sake of
clarity. The baseline workload is described below.

Data Sets and Workloads
We used the same data sets and workloads as in the prior tests. To rehash:

Data Sets
Record description: Each record consisted of 10 string fields, each 10 bytes

long and with a 2-byte name
Record size: 120 bytes
Key description: The key is the word “user” followed by a 64-bit Fowler-

Noll-Vo hash3 (in decimal notation)
Key size: 23 bytes
of records (strong scenario): 200,000,000
of records (weak scenario): 50,000,000

Workload
YCSB Distribution: Zipfian
Balanced: 50% reads / 50% writes

We ran each test for 10 minutes to bring the database to a steady state, then took a node down,
kept it down for 10 minutes, and then continued to run the test for an additional 20 minutes to
examine recovery properties.

3 http://en.wikipedia.org/wiki/Fowler_Noll_Vo_hash

 © 2013 Thumbtack Technology, Inc. 4 of 4

Overview of Failover Behaviors
As with all measurements, the durability and consistency settings on the database have
performance and reliability tradeoffs. The chart below shows some of the implications of the
databases we tested and how they would typically be configured:

 Aerospike
(async)

Aerospike
(sync)

Cassandra
(async)

Cassandra
(sync)

Couchbase
(async)

MongoDB
(async)

Standard
Replication Model

Asynchronous Synchronous Asynchronous Synchronous Asynchronous Asynchronous

Durability Asynchronous Synchronous Asynchronous Asynchronous Asynchronous Asynchronous

Default sync batch 128kB per device immediate 10 seconds 10 seconds 250k records 100 ms

Maximum write
throughput per
second4

230,000 95,000 22,000 22,000 270,000 24,000

Possible data loss
on temporary node
failure

large5 none 220,000 rows none large6

2400 rows

Consistency model7 Eventual Immediate Eventual Immediate Immediate* Immediate*

Consistency on
single node failure

Inconsistent Consistent Inconsistent Consistent Inconsistent Inconsistent

Availability on
single node failure /
no quorum

Available Available Available Unavailable8 Available Available

Data loss on replica
set failure9

25% 25% 25% 25% 25% 50%

All of these databases can be configured with other durability properties, for example MongoDB
and Couchbase can be configured not to return success until data has been written to disk

4 With these settings (from prior report with balanced workload)
5 Synchronous disk writes were about 95,000 writes per second, so under high load much of the
database could be stale
6 Disk IO was measured at about 40,000 writes per second, so under high load much of the database
could be stale
7 Couchbase and MongoDB both offer immediate consistency by routing all requests to a master node.
8 In our cluster. Technically, this should be written as “Availability when quorum not possible”, as it
depends on the replication factor being used. With a replication factor of 3 or 4 instead of our 2, the
system would be available when 1 replica is down but unavailable when 2 replicas are down.
9 By “Data loss on replica set failure”, we mean the loss of the number of nodes equal to the replication
factor. For MongoDB, this would mean losing all the nodes in a replica set.

 © 2013 Thumbtack Technology, Inc. 5 of 5

and/or replicated, but we choose the ones that worked well in our testing and would be used in
most production environments.

Results
Trying to quantify what happens during failover is complex and context-dependent, so before
presenting the raw numbers, we give an overview of what happens during failover for each of
these systems. We then present graphs of the databases performance over time in the face of
cluster failures, and then attempt to quantify some of the behaviors we witnessed.

For clarity, in this section we primarily show the behaviors for databases operating with a
working set that fits into RAM. We also tested with a larger data set that went to disk. Those
results were slower but similar in content, though with more noise that makes reading some of
the graphs difficult. We felt the RAM dataset is better for illustrating the failover behavior we
experienced.10

Aerospike	

(async)
Aerospike	

(sync)
Cassandra	

(async)
Cassandra	

(sync)
Couchbase	

(async)
MongoDB	

(async)

Original	
 Throughput 300,000 150,000 27,500 30,000 375,000 33,750

Original	
 Replication 100% 100% 99% 104% 100% 100%

Downtime	
 (ms) 3,200 1,600 6,300 ∞ 2,400* 4,250

Recovery	
 time	
 (ms) 4,500 900 27,000 N/A 5,000 600

Node	
 Down	
 Throughput 300,000 149,200 22,000 0 362,000 31,200

Node	
 Down	
 Replication 52% 52% N/A 54% 50% 50%

Time	
 to	
 stabilize	
 on	

node	
 up	
 (ms)
small 3,300 small small small 31,100

Final	
 Throughput 300,000 88,300 21,300† 17,500† 362,000 31,200

Final	
 Replication 100% 100% 101% 108% 76% 100%

†	
 Depends	
 on	
 driver	
 being	
 used.	
 	
 Newer	
 drivers	
 like	
 Hector	
 restore	
 to	
 100%	
 throughput
* Assuming perfect monitoring scripts

10 Our earlier report provides a detailed explanation of how these databases perform with a disk-based
data set, for those who are interested.

 © 2013 Thumbtack Technology, Inc. 6 of 6

Cluster Behavior Over Time
Below are some graphs that represent how the databases behaved over the full course of the
cluster disruption and recovery. For the sake of clarity, we do not show every test scenario, but
merely some representative cases that illustrate the behavior we saw.

Interpreting performance over time
The graphs below illustrate different behaviors of the databases through the lifecycles of some
representative tests.

The applications behaved similarly under the default case of 75% throughput using
asynchronous replication and a RAM-based data set. In all the cases, there was a brief period
of cluster downtime when a node went down, followed by continued throughput at or near the
original level. When the node rejoined the cluster, there was another brief period of downtime
followed by a throughput quickly being restored to the original level. The main difference
between databases was the level of volatility in latencies during major events. Aerospike
maintained the most consistent performance throughout. Cassandra showed increased
fluctuations while the node was down, and MongoDB became significantly more volatile as the
node rejoined the cluster. Couchbase had the peculiar characteristic of decreased volatility
while the node was down, presumably because of reduced replication.

Under 100% throughput, Aerospike, Cassandra, and Couchbase each saw capacity drop by
25% when a node went down, exactly as one would expect when losing one of four machines.
MongoDB showed no change; again this is what is expected given their replica set topology (the
number of nodes servicing requests is unchanged when a slave takes over for the downed
master.) When the node was brought back and rejoined the cluster, all the databases
recovered to near full throughput, though Couchbase took some time to do so. (In the picture
below, Cassandra throughput did not recover, but this is an artifact of the client driver’s
reconnect settings and does not represent database behavior.)

When running the tests with synchronous replication and using disk-based persistence, some
interesting trends are visible. Given a replication factor of 2, only Aerospike was able to keep
servicing synchronous requests on a node down event — it simply chose a new node for writing
replicas on incoming write operations. Both Cassandra and MongoDB simply failed for updates
that would have involved the missing replica. This resulted in downtime for the duration of the
node down event, but a rapid recovery to full capacity as soon as the missing node became
active again.11 A corollary for Aerospike is that there is substantial replication effect when the
node comes back and more current data is migrated to it, which can easily be seen in the graph.
As in our prior tests, we were unable to get Couchbase to function in a purely synchronous
manner.

11 If the replication factor were three, the writes should succeed. A more complete accounting of this will
be presented in a future report.

 © 2013 Thumbtack Technology, Inc. 7 of 7

75% load, asynchronous replication, RAM-based data set
Figure 1a: Aerospike Figure 1b: Cassandra

Figure 1c: Couchbase Figure 1d: MongoDB

 © 2013 Thumbtack Technology, Inc. 8 of 8

100% load, asynchronous replication, RAM-based data set
Figure 2a: Aerospike Figure 2b: Cassandra

Figure 2c: Couchbase Figure 2d: MongoDB

 © 2013 Thumbtack Technology, Inc. 9 of 9

75% load, synchronous replication, SSD-based data set
Figure 3a: Aerospike Figure 3b: Cassandra

Figure 3c: Couchbase (N/A) Figure 3d: MongoDB

 © 2013 Thumbtack Technology, Inc. 10 of 10

Node Down Behavior
We measured how long it takes for the database cluster to become responsive again (which we
defined as handling at least 10% of prior throughput) during a node down event. For this test,
the databases were running in an asynchronous mode. We examined the amount of time the
cluster was unavailable and the subsequent effect on performance with the node down.

All the databases performed quite well in this scenario. MongoDB, Couchbase, and Aerospike
all became available within 5 seconds of the event, while Cassandra took up to 20 seconds
under load. In the case of both MongoDB and Couchbase, the recovery time was close to
immediate (but see note below).

Figure 4a: Downtime, asynchronous replication, RAM-based data set12

12 We do not include a graph of downtime in synchronous mode. As discussed earlier, Cassandra will not
function in synchronous mode with a replication factor of 2 (though it will with larger replication factors),
and Couchbase and MongoDB are not designed with synchronous replication in mind. For Aerospike,
synchronous replication worked as advertised and had similar downtime numbers.

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

50%	
 of	
 max	

throughput	

75%	
 of	
 max	

throughput	

100%	
 of	
 max	

throughput	

m
ed

ia
n	

do

w
n*

m
e	

(m

s)
	

Down*me	
 by	
 transac*on	
 load	

Aerospike	

Cassandra	

Couchbase	

MongoDB	

 © 2013 Thumbtack Technology, Inc. 11 of 11

Figure 4b: Downtime, variability by database

Some caveats should be made in interpreting these results. First of all, we use a manual
failover for Couchbase. Couchbase’s auto-failover has a minimum value of 30 seconds, and
when using it we saw downtimes of 30-45 seconds. In contrast to the other products tested,
Couchbase recommends doing independent monitoring and failover of the cluster, and so we
assumed a near-perfect system that detected failures within 1 second. In reality, it would not be
realistic to assume a true failure based on one second of inactivity. What we can conclude
from this test is that when using outside monitoring, Couchbase can recover quickly if the
monitors and recovery scripts are reliable.

In short, we felt all of these products performed admirably in the face of node failures, given that
the frequency of such events are quite small, and all the times listed here are probably within
the level of noise in monitoring the system in general.

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

Aerospike	
 Cassandra	
 Couchbase	
 MongoDB	

m
in
/m

ax
	
 d
ow

n*
m
e	

(m

s)
	

Down*me	
 variability	

 © 2013 Thumbtack Technology, Inc. 12 of 12

Figure 5: Relative speed on node down (asynchronous replication, RAM-based data set)

Once the cluster becomes available after a failure, the performance remained unaffected for the
50% and 75% scenarios, exactly as we expected. For the 100% load scenario, the
performance degraded to approximately 75% as expected, with the exception of MongoDB,
which continued to perform at full speed since the formerly unused secondary nodes kicked in
to continue performance. (In some tests, the speed actually increased, which we chalked up to
the fact that replication overhead was no longer needed.)

Before the failure, latency for all the systems is extremely low, but after the node fails all the
systems slow down considerably.

Node Recovery Results
In general, restoring a cluster is a more expensive operation than losing a node, since the
database must first detect and resolve any conflicting updates and then replicate over any data
on the new node that might be stale. In our tests, all the databases were able to perform this
operation quite well with little downtime or impact on throughput.

0%	

20%	

40%	

60%	

80%	

100%	

120%	

50%	
 of	
 max	

throughput	

75%	
 of	
 max	

throughput	

unlimited	
 throughput	

Performance	
 on	
 node	
 down	

Aerospike	

Cassandra	

Couchbase	

MongoDB	

 © 2013 Thumbtack Technology, Inc. 13 of 13

Figure 6: Downtime during node join (asynchronous replication, RAM-based data set)

All the databases started servicing requests almost immediately, except for MongoDB which
had about 30 seconds of downtime when rejoining the cluster.

Figure 7: Relative performance after node joins (asynchronous replication, RAM-based data set)

As is clear from the 100% load scenario, throughput on the systems did not recover immediately
once the cluster is repaired (in the case of MongoDB, since the throughput never dropped, it did
not need to recover.) Once the new nodes were brought to a fully consistent state through

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

50%	
 of	
 max	

throughput	

75%	
 of	
 max	

throughput	

100%	
 of	
 max	

throughput	

m
ed

ia
n	

do

w
n*

m
e	

(m

s)
	

Down*me	
 on	
 node	
 restore	

Aerospike	

Cassandra	

Couchbase	

MongoDB	

75%	

80%	

85%	

90%	

95%	

100%	

105%	

50%	
 of	
 max	

throughput	

75%	
 of	
 max	

throughput	

unlimited	
 throughput	

Rela*ve	
 throughput	
 at	
 end	
 of	
 test	

Aerospike	

Cassandra	

Couchbase	

MongoDB	

 © 2013 Thumbtack Technology, Inc. 14 of 14

replication, performance recovered completely. The length of time it took for this replication to
complete is not a fair metric, since the amount of data being pushed through the systems varied
dramatically by database. We can say that for all databases, throughput eventually recovered
to starting values.

Conclusions
The central conclusion we made is that these products tend to perform failover and recovery as
expected, with varying levels of performance fluctuations during the tests. Even under heavy
write load, the interruptions in service were limited to 30 seconds or less. This was repeated in
numerous tests, using different methods of disrupting the cluster, and using different kinds of
workloads, storage models, and replication settings. The truth is that all these databases
performed were able to detect and automatically handle failure conditions and resume serving
requests quickly enough to not make this the primary concern.

The behavior of the databases as they handle the conditions is interesting. Of the four
databases we tested, only Aerospike was able to function in synchronous mode with a
replication factor of two. With a larger cluster and larger replication factor this is no longer true.
However, it is a significant advantage that Aerospike is able to function reliably on a smaller
amount of hardware while still maintaining true consistency.

As discussed in the beginning of our results section, one of the major disadvantages in running
in asynchronous mode is the potential for data loss on node outages. This can mean data
inconsistency in the case of a transient failure such as a network outage, or complete data loss
in the case of of a disk failure. Attempting to quantify this in a reproducible way was quite
difficult, and the tradeoff between performance and replication speed is tunable on some of
these systems. We did offer a theoretical amount of data loss based on the ways these
databases sync to disk.

During our tests we did discover some bugs in some of the products, all of which were fairly
easily worked around with relatively minor configuration changes. Such is the nature of testing
emerging technologies. Once those issues were accounted for, decisions between which
system to choose for failover should be made based on are more on decisions based on how
much data loss is acceptable (if any), and how much to invest in hardware versus software.

Lastly, we provide the obligatory caveat that no matter how much one tries to break something
in the lab, once it hits production there is always a new way. We can’t say these systems won’t
break in production, but we can say they all seemed to function as advertised in our tests with
little user interaction.

 © 2013 Thumbtack Technology, Inc. 15 of 15

Appendix A: Detailed Test List

Load 50 Million (or 200 Million) records to 4 node cluster
Load the complete dataset into each database. This was done once and then reused for each
of the following tests. In cases when waiting for rebalancing to be completed took longer than
erasing and reloading data, we simply rebuilt the database.

The charts in the paper are all based on the 50 million record data set. The 200 million record
data set was used to force disk access. The results were slower but not appreciably different in
meaning.

General Failover Test
We ran the YCSB Workload A (50% reads, 50% updates) on the cluster while limiting the
throughput to 50% maximum throughput the database can handle (known from our prior study).
After 10 minutes we would terminate a database on one node using the kill -9 command.
After 10 more minutes we would restart the process and rejoin the node to the cluster. We
would then wait 20 minutes to observe the behavior as the node joined the cluster.

On a node failure:

● For Aerospike, Cassandra, and MongoDB we did nothing and let the built-in auto-
recovery handle the situation.

 © 2013 Thumbtack Technology, Inc. 16 of 16

● For Couchbase, we used two methods:

○ The built-in auto-recovery, which takes 30 to 45 seconds to take effect.

○ A manual process:

■ Wait 1 second to simulate delay of automated monitoring software

■ Run the couchbase-cli failover command.

■ Wait 3 seconds (best value, by trial and error).

■ Run the couchbase-cli rebalance command.

To rejoin the cluster, we would use the following commands:

● Aerospike: /etc/init.d/citrusleaf start

● Cassandra: /opt/cassandra/bin/cassandra

● Couchbase: /etc/init.d/couchbase-server start; sleep 7; couchbase-cli server-add;
 sleep 3; couchbase-cli rebalance;

● MongoDB: /opt/mongodb/bin/mongod with all usual necessary parameters

Test Variations
We reran the above tests by varying different parameters:

Throughput
We ran the tests at three different load capacities.

● 50% — representing having plenty of hardware to spare

● 75% — representing the theoretical maximum that could be handled by the cluster with a
node down

● 100% — representing what would happen under extreme stress

Replication
We ran the tests using both synchronous and asynchronous replication for each database. The
way this is achieved is database-dependent and described in the original report. Couchbase did
not work reliably under synchronous replication, regardless of the size of the data set (it is not
the standard way Couchbase is used).

Data Set
We used both a data set of 50 million records to represent a working set that fits in RAM, as well
as a data set of 200 million records backed by SSD.

 © 2013 Thumbtack Technology, Inc. 17 of 17

Workload
We ran a workload of 50% reads and 50% writes, and also with 95% reads and 5% writes.

Node Failure Type
We tried two types of node failures in our tests:

● Hardware failure: Simulated by kill -9 on the server process

● Network / split brain: Simulated by raising a firewall between nodes

Metrics
We track the amount of time the cluster is unavailable by measuring the amount of time total
throughput remains less than 10% of the known capacity.

Replication statistics, when gathered, were determined by using the following commands:

● Aerospike: clmonitor -e info

● Cassandra: nodetool cfstats

● Couchbase: number of replica items was monitored through web console

● MongoDB: rs.status() to see which node is up and down, db.usertable.count()
 to check number of documents in a replica-set

Other measurements were performed directly.

Run failover test, Workload A, 75% of max throughput

The same as the test above, but the throughput is limited to 75% of known maximum throughput
of the database.

Run failover test, Workload A, 100% of max throughput

The same as the test above, but the throughput is not limited.

Resetting Tests
After a test is completed, but before we began another, we performed the following actions:

● Shut down all DB instances.

● Ensure all server processes are not running.

● Leave data on disk.

 © 2013 Thumbtack Technology, Inc. 18 of 18

Appendix B: Hardware and Software

Database Servers
We will run the tests on four server machines. Each machine has the following specs:

CPU: 8 x Intel(R) Xeon(R) CPU E5-2665 0 @ 2.40GHz
RAM: 31 GB13
SSD: 4 x INTEL SSDSA2CW120G3, 120 GB full capacity (94 GB over-

provisioned)
HDD: ST500NM0011, 500 GB, SATA III, 7200 RPM
Network: 1Gbps ethernet

OS: Ubuntu Server 12.04.1 64-bit (Linux kernel v.3.2.0)
JDK: Oracle JDK 7u9

Client Machines
We used eight client machines to generate load to the database with YCSB. Each had the
following specs:

CPU: 4 x Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz
RAM: 3.7 GB
HDD: ST500DM002-1BD142, 500 GB, SATA III, 7200 RPM

OS: Ubuntu Server 12.04.1 64-bit (Linux kernel v.3.2.0)
JDK: Oracle JDK 7u9

For further information on how these machines were configured, please refer to Appendices A
and B in our prior report.

Database Software
● Aerospike 2.6.0 (free community edition)

● Couchbase 2.0.0

● Cassandra 1.1.7

● MongoDB 2.2.2

For detailed database configuration information, please refer to Appendix C of the prior report.

13 32 GB of RAM, 1 GB of which is reserved for integrated video

 © 2013 Thumbtack Technology, Inc. 19 of 19

Client Software
● Thumbtack’s own customized version of YCSB, available from

https://github.com/thumbtack-technology/ycsb.

For details of the changes made to YCSB, please refer to Appendix E of the prior report. Minor
additional error logging changes were made for this follow up study, primarily to deal with
MongoDB and Cassandra errors we encountered.

	NoSQL Failover Characteristics 1
	NoSQL Failover Characteristics.2
	NoSQL Failover Characteristics.3

