

POF Art
Harvey Raja
Oracle Coherence | Principal Member Technical Staff

The following is intended to outline our general
product direction. It is intended for information
purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any
material, code, or functionality, and should not be
relied upon in making purchasing decisions.
The development, release, and timing of any
features or functionality described for Oracle’s
products remains at the sole discretion of Oracle.

Portable Object Format

•  Description

•  Who is not using POF?

•  Features / Time:
–  Annotations
–  Identity and Reference Support
–  Nested Writers
–  POFExtractor / POFUpdater
–  Evolvable

Deconstruct the Binary

•  Decorations used for internal purposes
•  Well Defined structure allows traversal (POFExtractor)
•  Packed Integers
–  Integer != 4 bytes
–  Sign and continuation bits

•  Tiny Strings
•  POF Type Id minimum is 1 byte (63 types)
–  int 16 == 0x79 type-id

DECO TypeId
(custom)

Attribute
Index

TypeId
0x41 23 Attribute

Index
TypeId
0x79

Attribute
Index

TypeId
0x4E foo TypeId

(custom) . . .

Tips

•  String use smallest character set possible

•  Nested buffers avoid attribute index collision

•  Take advantage:
–  Use integers in the range of -1 to 22

Evolvable

•  The ability to maintain heterogeneously versioned
objects in a Cluster
–  Lack of control of clients
–  Time window of a rolling restart
–  Just because you can

•  Maintain existing structure

•  Append new attributes

Still Evolving

Version 1 Version 2

serialize

10110110
00101010
11010011
11101111
11001100
01010101

10110110
00101010
11010011
11101111
11001100
01010101

deserialize

Evolve already!

Version 1 Version 2

deserialize serialize

10110110
00101010
11010011
11101111
11001100
01010101
00111100
10011001

10110110
00101010
11010011
11101111
11001100
01010101

00111100
10011001

00111100
10011001

Version 1 Version 2

serialize

11100110
00101011
11111111
11101111
00101100
11110101

deserialize
11100110
00101011
11111111
11101111
00101100
11110101
00111100
10011001

Tri-Evolvable

Version 1

Version 2

deserialize serialize

10110110
00101010
11010011
11101111
11001100
01010101
00111100
10011001

Version 3

10110110
00101010
11010011
11101111
11001100
01010101
00111100
10011001

10110110
00101010
11010011
11101111
11001100
01010101
00111100
10011001

11011011

Delta Compressor

•  Can be used to create binary diff between two binary
objects

•  Can be enabled for backups:

•  May be useful in your applications

BinaryDeltaCompressor#applyDelta

•  Receives the original binary and the delta binary
•  The delta is a sequence of instructions for applyDelta

to execute
•  First byte suggests mode of operation:
–  Empty Binary
•  Return an empty byte[]

–  Binary Replace
•  Ignore the old value in favor of the delta in its entirety

–  Binary Diff
•  This delta contains instructions allowing a merge using the

old value and the delta

Binary Diff

•  Delta is a stack of instructions and operands with the
old binary acting as a data register
•  Reverse of Java Byte code
–  Instruction followed by operands

•  Mnemonics:
–  OP_EXTRACT
•  Extract from old binary

–  OP_APPEND
•  Append from delta

–  OP_TERM
•  Terminate

0x01

0x02

0x03

offset, number of bytes

number of bytes

Collection Manipulation

•  Ever wanted to modify a collection without
deserializing all elements?

•  Binary Old Value:

•  Instruction Set & Operands (Binary Delta):

FMT_BINDIFF OP_EXTRACT 0 32 OP_APPEND 34 Collection
TypeId

New
Size

Element
1

Element
2

Element
3

Element
4

OP_EXTRACT 25650

POF Head Collection
TypeId

Collection
Size

Element
1

Element
2 POF Tail

32 50 256

Demo

