
Enabling Testing, Design and Refactoring Practices in Remote Locations

Amey Dhoke, Greg Gigon
Kuldeep Singh, Amit Chhajed

Ben Stopford
The Royal Bank of Scotland

London
benjamin.stopford @rbs.com

Abstract - Learning is a process of successive steps; we learn,
we practice, the process cycles. It requires dedication from
both teacher and student and it requires constant
reinforcement [13]. It is our contention that the best method
for transferring skills like testing, refactoring and software
design is through contextual learning: An ongoing program of
enablement in which practices are shared in the context of the
programmer�’s work in response to the challenges they face.
The code base forms the basis for contextual learning
providing an information conduit that is location, language
and culturally agnostic.

We discuss some of the problems faced by our team: A
greenfield, test-driven project with twenty developers split
between London and India. We discuss the methods employed
to better enable testing and refactoring practices across this
geographical divide. We found that different practices better-
suited different phases of the project and different stages of
learning within the team. As such these practices are mapped
to the Shuhari learning model [16].

We conclude that there is no substitute for colocation. However
we found that the team�’s motivation is crucial to the success of
learning endeavors. Intensive one-on-one practices worked
well at the start of the project, when motivation was high and
there was lots of ground to cover. As the project continued, the
distribution of skills became more even and more collaborative
practices were better suited to promoting learning.

Keywords - Distributed software development, Programming
practices enablement, Learning techniques

I. INTRODUCTION
Distributed teams are a common occurrence these days,

particularly in the software development community. Along
with issues of physical separation there are disparities in
culture, language, time zone and skill sets [2].

Testing and refactoring are widely considered to be
necessary skills for effective software development. As with
other skills, they require learning and practice. The more
practice a programmer has the more skilled they become.
However, to maximise the programmer�’s learning,
instruction needs to be both directed and constantly enforced.

It is our belief that traditional learning methods break
down in the context of teams separated by geographical
boundaries. Classroom style teaching is rarely successful if
delivered in isolation. Typical methods such as the sending
of code snippets, documents and diagrams cannot substitute

for collocated techniques like whiteboard sessions and
pairing.

A. The Shuhari Learning Model
We found it useful to relate the team�’s learning back to

the Shuhari learning model. This model describes three
stages of proficiency that students travel through. Shu
describes the early stage of learning where students repeat a
practice verbatim and in isolation. In the Ha stage their
understanding of the practices they have learnt combine and
they start to innovate. In the final stage, Ri, they become
uninhibited by the constraints of what they have been
taught.

B. The Effective Teaching of Refactoring and Testing
Practices Requires Contextual Learning
Books and other typical classroom aids provide an

effective theoretical basis for refactoring and testing.
However the application of these concepts in the context of
real-world systems is a far greater challenge. Bookwork is
good for providing a conceptual understanding but this needs
reinforcing in a real world context. The Strategy Pattern
provides a good example [3]. It is often taught using a
sorting analogy where different algorithms represent
different strategies that can be applied to the sorting of a list,
each having the same functional output. For example bubble
sort or quick sort algorithms. However, the real world
application of this pattern can be quite different. For example
replacing conditionals using a Strategy (or Policy) as in the
Replace Conditional with Polymorphism refactor [4] and
Conditional Decomposition [5]. Understanding (or teaching)
the application of such patterns is difficult in the absence of
the contextual complexities of a of a real-world code.

C. The Importance of an Apprenticeship Model
Cognitive Science states that one of the most effective

methods of learning is the apprenticeship model [6]. In our
context the student is taken through a solution in a
collaborative manner, preferably with reference to a
vocational situation. In teams following an Agile
methodology this generally takes the form of Pair
Programming [7]. The pairing method can be used in an
instructional way when experienced programmers are paired
with less experienced students to lead them through the
challenges of daily programming tasks. This facilitates both
the constant feedback necessary to learn as well as the
contextual basis of a real code base and real world problems.

D. Communication Issues
A lack of direct communication is one of the

fundamental problems faced by distributed teams [8]
making all forms of learning a challenge. Language, cultural
and time zone differences all play their part. Language
differences can be compounded further by a lack of
familiarity with the more esoteric concepts and language
present in most technical fields.

These factors can lead to unnecessary frustration on
both sides, particularly in one-on-one sessions when
communicating uses low bandwidth phone lines.

E. Collaboration aids Motivation and Higher Levels of
Learning
We found motivation to be a key element in creating a

learning culture but motivation is degraded if the team is not
operating as a group of equals. It is easy to slip into a them-
and-us mentality when teams separated geographically, and
this can be worsened if practices focus on a single direction
of learning rather than being collaborative. Collaborative
practices lead to the feeling of one team, which encourages
higher forms of learning (as in the ha, or innovating, stage
of learning). They also can be beneficial, particularly when
combined with code review: Whilst someone less
experienced with Test Driven Development (TDD) may not
be able to aide a more advanced one with her practice, he is
still able to provide useful appraisal of her code.

Collaborative practices cannot substitute for focussed,
individual teaching, which is always needed for accelerated
training.

II. THE CONTEXT OF THE ODC TEAM
The Operational Data Cache (ODC) team, from which

the experiences described in this paper originate, is a
distributed team of around 20 developers spread 12:8
between India and the UK. The project was originally
greenfield, is developed using Test Driven Development
and has run for a year and a half. There were various
disparities in expertise running in both directions across the
geographical divide. As a result a variety of methods were
explored to distribute this knowledge and skills from one
location to another.

III. TENETS THAT DRIVE OUR LEARNING PRACTICES
The practices detailed in the following section are driven

from three key tenets:
1. Learning practices must be collaborative and bi-

directional. One way �‘instruction�’ or �‘review�’ will
only prove fruitful for limited periods as it stifles
both adoption and ownership of the practices being
taught.

2. The code base should be considered the main tool
for communicating practices and techniques. It is
culturally neutral language and forms the key to
contextual understanding. Techniques that are code

focussed should be preferred to any form of
theoretical discourse.

3. The distribution of skills will become increasingly
homogenous as the team learns. The project
dynamic also naturally changes on all projects [17].
Learning practices should take these changes into
account with the team using different practices at
different times in the project lifecycle.

IV. STRUCTURAL AND PROCEDURAL SKILLS
We find it beneficial to segregate skills we needed to

transfer into two types: Structural and Procedural. We use
these to categorise practices.

1. Structural Skills are those required to create well-
structured software, for example the application of patterns,
the use of different types of unit tests and use of different
types of test fixtures and builders. Methods for dealing with
these problems were best taught with the code base as the
primary medium for knowledge transfer. This being
necessitated by the problems being contextual: solutions had
to be taught in the context of real world problems.

2. Procedural Skills. These involve the processes a
developer goes through writing software for example the
compartmentalisation of a problem into individually
committable steps, the selection of seams [15] for
refactoring and the test, pass, refactor cycle [14]. Such
processes are extremely difficult to teach without
colocation.

The practices here mostly focus on Structural Skills.

Figure 1: Description of the three phases in the Shuhari

learning model.
We found different practices more appropriate at

different stages �– focused mentoring followed by more
collaborative and structured practices. The transition
between phases is achieved by continuous learning.

V. DISTRIBUTED LEARNING TECHNIQUES USED TO AID
TDD, REFACTORING AND DESIGN PRACTICES ON THE ODC

PROJECT

A. Abridged Pairing
The aim of this practice was to transfer OO, testing and

refactoring practices from one location to another in an
apprenticeship-like manner.

In this practice, two developers, one from each location
pair on design and development practices for 1 hour each
day. The process is repeated daily to retain continuity.
Developers switch pairs at the end of the story. Tasks are set
for completion between sessions and questions that come up
in the interval are answered. The sessions were facilitated
through a desktop sharing tool [9] and telephone
communication.

1) Pros
Targeted/Interactive: The targeted, interactive nature of

this practice made it one of the most productive. Its one-on-
one nature allows focus to be specific to the individuals
involved and the context of the problem at hand. Pair
rotation helps in development of uniform understanding
across the team.

Continuity: The on-going sessions provide the feedback
necessary to facilitate effective apprenticeship learning, with
the pair following the evolution of a real software problem
(typically a story) over a number of days.

Real-World Problems: The practice focuses exclusively
on real world problems in the context of the project code
base and the story being developed. This allows techniques
like refactoring, testing and OO design to be discussed in the
context of an evolving story. As such, it echoes many of the
learning characteristics associated with traditional pair
programming [9].

2) Cons
Suitable for Structural not Procedural Skill Transfer:

Unlike traditional pairing, the short timescales involved in
Abridged Pairing make it hard to teach procedural skills
(such as the test-pass-refactor cycle [14]). The sessions
tended to work better when structural issues, such as a
mixing of concerns in a class, were addressed.

Read-Only Code Communication: Developers can
discuss the problem in the context of the code base but the
latency of the screen sharing software made concurrent
editing impractical. This hinders the usefulness of the code
base as a communication tool as changes can only be made
by one member at a time.

Frustration: Both sides of the pairing found the practice
difficult at times. The one to one nature of the practice makes
it open to communication frustration. As such, whilst very
successful for short bursts, it became harder to maintain the
enthusiasm necessary for such intense sessions in longer-
term.

B. Collaborative Refactoring
This practice is similar to a traditional code review [10].

When a story is completed it is handed to a developer from
the remote team for review. Instead of the traditional review

process the reviewer actually refactors the code he is
reviewing. At the end of the session the original programmer
analyses the changes that were made and discusses them
with the reviewer. The practice works best when it is
targeted at a particular goal, for example describing the
replace conditional with polymorphism refactor by applying
it to a well known piece of code.

1) Pros
Real-World Problems: There are no contrived examples

in this practice. One developer shows the other what they
mean by making the changes and then letting the other view
the differences. It provides the developer physical examples
of the decisions that another developer make, just as they
would in a collocated paring session.

Code as the Primary Communication Channel: Rather
than describing what they mean over the phone one
developer shows the other by changing the code and have the
other review it. The code base becomes the communication
medium through which the pattern is communicated rather
than relying on the phone. For this reason, like Abridged
Pairing, it is better suited to OO Design and refactoring (i.e.
structural techniques rather than procedural ones like the
test-pass-refactor cycle [14]).

2) Cons
Time Consuming: Like Abridged Pairing, collaborative

Refactoring is quite time consuming and the context switch
required from the teacher impacts their performance and
Flow.

Unintentional Offense: Also common to Abridged
Pairing, this practice has the potential to cause unintentional
offense if refactorings are too broad in scope. This is
minimised by keeping the session targeted to a specific goal.

C. Code Review Blitz
This practice involves one large, consolidated pairing

session incorporating developers from both locations. The
practice has three phases: An initial phase in which the
stories under review are discussed. A second phase where
the stories are reviewed and notes are taken (similar to a
regular code review [10]). In the final stage reviewers
provide feedback. Themes from the reviews are collected
and addressed in additional one-on-one of group sessions.

1) Pros
The Group Provides motivation: We noticed a number of

advantages when moving to group based practices. The
group dynamic gives more inertia to the practice,
encouraging participation.

Groups are more disarming: We found the group
dynamic to be more collaborative and disarming than direct
one-to-one feedback. This makes it more engaging for both
teams increasing learning potential.

Collecting Broader Themes: The group nature of this
practice makes it easier to collect broader themes to be
focussed on separately either in group design sessions or
more focussed practices.

2) Cons
Lack of Review Freshness: Probably the biggest

drawback of this practice is the lack of freshness in the code
under review, the oldest of which may be weeks old by the

time the next Code Review Blitz comes around. This lack of
freshness in the minds of the developers weakens the
learning potential of the practice.

More Review than Instructional: The Code Review Blitz
does not use the code base as a conduit for instruction. As
such the learning potential it provides is limited.

D. Secondary Level Training: Driving Focussed Traning
Sessions From Broader Review and Instructional
Methods
The review and instructional processes described above

provide a base level of training, focussing on skills and
apprenticeship rather than the software development theory
and broader practices. As such we found it to be beneficial to
have a second, more focused level. This second level is
driven from the Abridged Pairing, Collaborative Refactoring,
the Code Review Blitz sessions or even just the general
wonderings of the code base that occur during software
development. The team looks for overarching themes or
problems that require longer, more focussed training or
discussion and addresses them specifically. For example it
was observed that testing practices were often leading to too
much coupling between test classes and implementations.
This leads to collocated training sessions on TDD. Other
sessions were conducted over phone / screen sharing / video
conferencing (The phone / screen sharing generally being
considered the most productive).

E. Developer Rotations
The most brute force approach that we tried: developers

swap location for two-week periods.
This provides the opportunity to learn development

practices first hand, pair etc. It also helps develop a common
set of development practices and improves the feeling of
collective ownership [11]. This is the only effective way we
found for transferring procedural skills like the test-pass-
refactor cycle [14]. The downside of this practice is the
travel expense.

F. Utilising Practice Champions
We found that where a practice needed transferring, it

was often beneficial to focus on one team member who
displayed proficiency and who could then inculcate these
practices in an on going basis. This technique is particularly
useful when transferring procedural rather than structural
skills requiring a more apprentice-like learning method.

G. Building a Raport
It is beneficial to include a preparatory phase at the start

of the project as well as preceding learning exercises in
which the team get honest and open communication. Video
conference sessions without specific agendas work well
simply as a tool to help build relationships. Developer
rotations work even better. We found that one-on-one
practices were noticeably easier for both parties where a
bond had been formed between the participants earlier in the
project.

H. Remote Pair Programming
We did not try this practice due to insufficient tool

support, communication issues and timing differences. We
make note of it only because of its reported success in other
contexts [12].

VI. CONCLUSIONS
This talk presents a case study from the ODC team that

explores the challenges faced in transferring skills across a
geographical boundary.

Our premise is that distributed communication is a skill
distinct from its co-located counterpart. A familiarity with
collocated communication can blind us to its ineffectiveness
in a geographically and culturally dispersed context. As
such we suggest practices that favour the use of the code
base as a conduit rather than traditional, verbal methods.

We found that the team needed a range of practices that
could be switched in and out at different times in the
project�’s evolution. Learning practices cause knowledge
differentials within the team to subside and this changes the
practices that are needed. Mentoring style practices are
intense and effective but difficult to maintain in longer term
and as such, they are needed less as the team matures. This
provides the most benefit at the start of the project when
practices sit in the Shu (repetition) phase of learning in
Figure 1 [16]. However the prolonged use of mentoring-
styled practices can inhibit growth by discouraging equality
across the team. Switching to collaborative practices helped
to foster the move to the Ha (innovative) stage of learning.
Composite practices like the Code Review Blitz provide the
benefits of personal direction as well as group feedback. By
applying these practices at different phases in project
lifecycle, we have achieved a more motivated and cohesive
team. We are in the process of extending this work further
to explore additional collaborative practices that focus on
greater interaction between team members.

[1] Lotlarsky, J & Oshri,l, (2005) Social ties, knowledge shareing and

successful collaboration in globally distribted, system development
projects. European Journal of Informantion Systems, 14, pp. 37-48

[2] B. Ramesh, L. Cao, K. Mohan, P. Xu, �“Can distributed software
development be agile?�”, Communications of the ACM, October 2006,
pp. 41-46

[3] J. Kierievsky, �“Refactoring to patterns�”, China Machine Press, 2006
[4] M. Fowler, K. Beck, �“Refactoring: improving the design of existing

code�”, Addison Wesley Longman, 1999, pp.255 - 260
[5] M. Fowler, K. Beck, �“Refactoring: improving the design of existing

code�”, Addison Wesley Longman, 1999, pp.238 - 240
[6] S. E. Berryman, �“Designing Effective Learning Environments:

Cognitive Apprenticeship Models�”, ERIC Document, 1991, pp. 1
[7] D. Wells, �“Pair Programming�”,

http://www.extremeprogramming.org/rules/pair.html, 1997
[8] L. Layman, L. Williams, D. Damian, H. Bure, �“Essential

communication practices for Extreme Programming in a global
software development team�”, Elsevier, 2006, pp. 1-2

[9] Williams L. and Kessler R., �“Pair Programming Illuminated�”,
Addison-Wesley, 2002, pp. 113-114

[10] Johnson, P.M., Reengineering Inspection: The Future of Formal
Technical Review, in Communications of the ACM. 1998. pp. 49-52

[11] Distributed agile development at Microsoft patterns and practices
group pp. 10-11

[12] Williams, L., et al., Strengthening the Case for Pair Programming, in
IEEE Software.
Online at http://www.cs.utah.edu/~lwilliam/Papers/ieeeSoftware

[13] http://en.wikipedia.org/wiki/Reinforcement_learning

[14] Growing Object-Oriented Software Guided By Tests Steve Freeman,
Nat Pryce, Addison Wesley 2009

[15] Working Effectively with Legacy Code - Robert C Martin, 2004
[16] McCarthy, Patrick, "The World within Karate & Kinjo Hiroshi" in

Journal of Asian Martial Arts, V. 3 No. 2, 1994.
[17] �“Developmental sequence in small groups�”. Phycological Bullitin 63
(1965)

