
Managing Refactoring in a Test
Driven World

R
ef

Te
st Refactoring Tested

Code: Has Mocking
Gone Wrong?

Ben Stopford
Royal Bank of Scotland

“I've always been a old
fashioned classic TDDer and
thus far I don't see any
reason to change. I don't see

any compelling benefits for mockist
TDD, and am concerned about the
consequences of coupling tests to
implementation.”

This is about as far from the fence as
Martin ever gets!!

Mocking, BDD, Interaction based testing.
The belief is that they inhibit refactoring
because of the coupling they add between
test and source. This is what we will be
looking at today.

A Chronology
of Testing

Isolating
Functionality

in State
Based Tests
Using Stubs

Interaction
Based
Testing

The Affect IBT
has on

Refactoring

Managing
Refactoring in
an IBT World

O
n

e

A Chronology

XP

• Introduced in late 1990’s

• Automated testing features heavily in the 12 key
practices

• Designed to reduce the risk of change

• Practices that seem somewhat counterintuitive, but work

Test First

• Write tests before writing code

• Change in programming process

• Focuses intention on required functionality

Test Driven

• Evolution of Test First

• Work in a tight loop: Test-Code-Refactor

• Demarcate test areas with stubs: So you
break off no more than you can chew.

Interaction
Based Testing

• Characterised by the use of Mocking
Frameworks

• Contrasting technique to State Based testing

• Interactions between collaborating classes
are tested not the class’ final state.

Nomenclature

Mock:
Objects pre-programmed with
expectations which form a
specification of the calls they are
expected to receive.

Stubs: Provide canned answers to calls
made during the test.

Dummy:
Objects are passed around but
never actually used. Usually they
are just used to fill parameter
lists.

Tw
o Isolating the Functionality
Under Test

State Based Testing

Testing the
CashTransfer object
involves testing the
whole dependency
tree.

State Based Testing

@Test void shouldMoveCashToNewAccount(){
Transfer tran = new CashTransfer(5,…);
tran.execute(newAcc);
assertEqual(expected, newAcc.balance());

}

Test body that
Exercises the
Class under test

State based
assertion

State Based Tests Often Overlap

Save
Button

Save
Action

Validity
Check

ORM
DB

Failure in the ORM causes all tests to fail

Save
Button

Save
Action

Validity
Check

ORM
DB

K
ey

 P
o

in
t Tests that do not

‘isolate’ the code being
tested will likely
overlap. This makes it
hard to diagnose the
source of a break.

Isolate the area under test with stubbed interfaces that
provide fixed behaviour.

Save
Button

Save
Action

Validity
Check

ORM
DB

class StubValididityCheck{
boolean valid(){

return true;
}

}

Stub n’
State

approach

Tests now break in isolation

Save
Button

Save
Action

Validity
Check

ORM
DB

Stubs isolate sections of the Object Graph because they
have no real behaviour. They provide pre-canned answers.

o = new ruleComposite(new A(…), new B(…));
result = o.run(user);

assertEqual(Result.VALID, result);

o = new ObjectUnderTest(stubA, stubB);

result = o.doSomething();

assertEqual(expected, result);

B

A

B

A

Each test is isolated from change in other classes

K
ey

 P
o

in
t To unit test properly

you need to isolate
the area of the code
under test.

Conjunction of all tests are also tested End-to-End

<End-to-End Test>

Save
Button

Save
Action

Validity
Check

ORM
DB

… we need to make sure all the dots tie up!

(else our wrapped up units might start to diverge)

Th
re

e Interaction Based
Testing

A better model is the ‘Budding’ model

State based testing is ok here

Not so good here!

Problem: Classes that don’t
change observable state

Marshellers

Proxies

Caches

Composite

Assert
Here

A Composite Object

Behaviour is defined by
forwarding calls to
composed objects

No observable
change in state

Assert
Here

Mocking frameworks automate the testing of the
interactions between classes

Mock based test

Interaction Based Testing

Rather than testing changes in state, the
interaction between objects are asserted.

o = new RuleComposite(mockRuleA, mockRuleB);

check(new Expectation(){

oneof(mockRuleA.run(user));

oneof(mockRuleB.run(user)).throws(getExep());

};

o.run(obj);

B

A

K
ey

 P
o

in
t

Mocked objects add
additional coupling between
test and source as mocks
assert how an object
behaves towards its
collaborators, not just how
it changes state or what it
returns.

How does this relate to the State based testing
with Stubs?

Both allow us to isolate the code under test.

In practice Mocking leads to a very different
development process largely because you tend to
mock at a class by class level, teasing out roles for
collaborating classes.

Mocks used
here. No need

to develop
Classes yet!

Mocking facilitates a different
development process.

Develop Class
and Test in a
tight loop

Collaborators do not need to be implemented
for the test to pass. They are simply mocked.

The ‘Mockist’ approach is different

If the class under test needs to collaborate with
another class then a mock is used.

This teases out roles a class requires from its
collaborators (similar to Design by Contract).

All classes are tested in complete isolation,
demarcated by mocked objects.

The interactions between classes form the primary
driver for assertions rather than changes in state.

Fo
u

r Refactoring Interaction
Tested Code

Mocking Increases Coupling

Using Interaction Based Testing increases the
coupling between test and source code.

Tests assert on whether a method is called,
with what arguments and how many times.

This breaks encapsulation as the internals of
how the class interacts with it’s collaborators
is exposed.

Thus, if refactoring changes the way an class
interacts with collaborators tests may fail.

Increased Coupling makes refactoring harder
St

u
b

 n
’ S

ta
te

In
te

ra
ct

io
n

B

as
ed

Te

st
in

g

Refactoring a class may change
the way it communicates with
collaborating classes, breaking
interaction based tests.

Refactoring should not change the
behavior of a class. Hence state
based tests should not break.

Interaction Based Testing is harder. There is more
metaphorical rope.

Most horror stories associated with Interaction Based Tests are
a result of excessive coupling produced by poor implementation

How Mocking Can Add Unnecessary Coupling?

Mocking Value Objects: An orange is always an
orange

How Mocking Can Add Unnecessary Coupling

Complex Constructors: There’s a test trying to get
out

K
ey

 P
o

in
t If good OO principals are not

rigorously applied mock driven
tests will may become overly
complex. The tests are very
sensitive to the design

Small classes or
classes with low

functional content

Increase ratio
between tested
interactions and

functional content

Increase the cost of
change

Inhibit refactoring

Smaller classes / classes with little functionality
increase the support burden needlessly.

For Example the Extract Class refactor

Increases the
number of
interaction
points whilst
holding the
functional
content constant

K
ey

 P
o

in
t The Mockist’s needs to be

maintain a balance between the
number of interaction based
tests and the corresponding
functional content.

Fi
ve Managing Refactoring in

a Test Driven World

Best Practices for Interaction Based Testing

Don’t mock behaviours that are not relevant to
the test (stub them).

Avoid complex constructors, static initialisers or
other setup code that crosscuts multiple
execution paths.

Only mock classes under your control.

Don’t mock value objects.

You don’t need to mock everything.

You don’t need to mock everything!

Demarcating groups of objects with mocks and using state
based testing internally good practice.

A group of collaborating
objects are isolated with
mocks. Internally state
based testing is used.

All interactions are
mocked

So What Do We Have?

Unit tests requires isolating the code under test to ensure we
get accurate feedback on test failures => Mocks or Stubs.

Both mocks and stubs add a small maintenance burden to the
project as they must be kept up to date.

IBT facilitates a different method of doing TDD. It allows you to
drive out code for a class without developing its collaborators.

Interaction Based Testing with Mocking Frameworks introduces
tighter couplings between test and source. This makes
refactoring more difficult.

So What Do We Have?

...But most horror stories resulting from the use of IBTs arise
from coupling introduced by poor implementation, not an
intrinsic property of the process.

Some of these problems have been highlighted here (complex
constructor, mocking value objects etc)

The Mockist approach of applying IBT at a class by class level
magnifies poor design.

The Mockist approach encourages isolation at a class level but
this is not mandatory. Mixing IBT and state based testing
provides a balanced approach.

Finally, my personal thoughts…

Mockist TDD is a pleasant process to follow.

I like to start with the stub n’ state approach (using a mocking
framework to create the stubs), then add expectations that
relate to the particular test.

I also tend not to mock interactions between classes I consider
to be closely coupled, I tend to favour state based tests with the
demarcation of mocks surrounding the group.

To me the two approaches are not mutually exclusive, you have
to have some demarcation. The trick is to know how much to
test in isolation and when to assert expectations over stubs

