
Test-Oriented Languages: Is it Time for a New Era?

Benjamin Stopford
The Royal Bank of Scotland

London, UK
e-mail: Benjamin.stopford@rbs.com

Abstract

More than a decade has passed since the advent of Test Driven
Development and the introduction of the tools that facilitate its
practice. However, it is our belief that we are nearing the limits
through which functional decoration can aid the testing of current
imperative languages.

This paper presents a thought experiment to explore improvements
to the testability of current imperative languages. We use the guise
of a hypothetical language, Quilt1, to present one path that such a
language might take. For brevity we retain the language constructs
of current imperative languages like Java and C# and explore
alterations in the compiler operation that make the language more
test-oriented.

Quilt extends the Mockist Test Driven Development approach
[2,9] by integrating the role of unit test isolation into the compiler.
The application is split into a patchwork of independently testable
units. However, unlike current Mocking frameworks [5,11,12],
Quilt isolates through the provision of stub Methods, not Objects.
Methods that do not return state (or mutate passed references) are
automatically stubbed. Methods that do return state cause
compilation failures if a stub has not been provided.

Through static analysis the compiler minimises the number of
interactions that require isolation, reducing coupling between test
and class (when compared to current testing practices). The effect
is to significantly reduce the barriers to testing: Less test setup is
needed, there is no need to inject dependencies for the purpose of
testing and even preexisting code is easy to test2.

We conclude that testing in current object-oriented programming
languages is already largely incumbent and ultimately inevitable.
However, the penetration of the Mockist approach has been limited
somewhat by a high barrier to entry and adverse side effects
experienced under certain conditions. We make a case for the
value of unit test isolation and describe a mechanism for lowering
this barrier for entry, reducing coupling issues, and generally
making TDD easier.

Keyword - testing; programming language; test driven
development

1

 The name Quilt alludes to it being a ‘patchwork’ of independently
testable units.
2 We are not advocating the practice of ‘test last’, we simply acknowledge
that the practice of TDD is not for everyone (however much we would like
it to be). We believe the language should facilitate testing regardless for
your preference in this matter.

I. DEFINTITION OF TERMS
Some of the terminology in this field is overloaded so

we define a few terms used throughout this paper:

- Stub: A test implementation, usually passed by interface,
which provides pre-canned answers. It is used simply to
isolate the code under test.
- Mock: Similar to a stub but allowing the tester to assert on
whether the mock was called and in what way.
- Mockist TDD / Interaction Testing: This is the process of
testing both the state an object changes to and the
interactions that it makes. The approach is described in [9].

II. INTRODUCTION
There have been a number of epochs in software

development: Object Orientation (OO) took over from the
Procedural paradigm as practices moved away from the
writing of code towards the modelling of software as a
cognitive artefact. The foundations for this shift were laid
down by the development community as they attempted to
promote reuse, increase encapsulation and model their
software, pushing the boundaries of the procedural constructs
they had. These ideas were extended and solidified through
the creation of languages such as Simula and Smalltalk that
actively engaged such tenets.

This paper investigates what may be a comparable shift
in current OO programming languages as the community
strives to embrace Programmer Testing. During the last
decade or so the testing of software has gained prominence
and has, for some, become a prime focus in the process of
computer programming. Test Driven Development (TDD) is
now a mature practice. It remains our contention that it is
inhibited by the constructs of current mainstream Object
Oriented languages. In particular Mockist TDD requires the
application of strict practices [9] to avoid test code becoming
highly coupled to the implementation. Whilst we
acknowledge that such practices are beneficial to the
program [9], the fact that the code must be written in a
certain way to make it easy to mock makes the practice
unsuitable for mainstream programming. This paper
proposes a method for lowering the barrier for entry, making
it easier for both new and experienced programmers to
embrace testing. We posit that such a progression requires
changes in the programming language, but believe it is a
price worth paying

A. The Motivations for Isolating the Class Under Test
If an application is built without the use of stubs to

demarcate the units under test, it will inevitably suffer from
test case overlap: multiple tests will exercise the same
sections of source code. This overlap of code sections from
different tests degrades the feedback provided when failures
occur: A single bug will manifest itself as a multitude of
failures in the overlapping tests (Figure 1).

Figure 1. A single bug causing multiple failures in overlapping tests.

Using stub objects to isolate the code under test breaks

the call stack into separate sections that are tested
independently. This provides more accurate feedback on the
location of the test failure (see Figure 2).

Figure 2. Each test isolates the code being tested using stubs. The same

failure seen in Figure 1 causes only one test to break.

In addition, by segregating the code under test the scope

of the problem is reduced to a more manageable size. This
process of compartmentalization makes the software easier
to develop and maintain.

B. The Motivations for Testing Interactions
In traditional TDD, stubs are used to isolate the code

under test, but stubs alone leave the developer with a
problem: Some classes simply do not expose a change in
state, making them hard to test using state-based assertions:
there is simply nothing to assert on. An example of such a
class is a Proxy [13].

One way to test such objects is to use an “active” stub,
one that tracks calls made to it and exposes them to- be-
asserted upon. The development of such ‘active’ stubs is the
first step on the road to Interaction Testing.

Interaction testing (or Mockist TDD), as a testing
methodology, goes far beyond the use of ‘active’ stubs; it is a
change in the testing paradigm. Tests become about the
interactions we expect an object to make rather than the
changes we expect in its exposed state: When the Proxy is
called we expect it to call the object it is proxying. This is
demonstrated in Figure 3. The class at the top of the figure is
suitable for state-based testing; it has no collaborators down

the stack. The lower, mid-chain example interacts with
classes further down the stack so interaction testing is likely
to be more appropriate.
Figure 3. Representation of a call graph in a typical program showing the
difference between a naturally isolated class that can be tested through its

exposed state and one that requires interaction testing.

III. PROBLEMS ASSOCIATED WITH THE TESTING OF
CURRENT IMPERITIVE LANGUAGES

A. Problems with Coupling in Test Driven Code
One of the key criticisms of Mock objects and Mockist

TDD is the increased coupling between class and test [2,8].
Martin Fowler, for example states:

“I don't see any compelling benefits for mockist TDD,

and am concerned about the consequences of coupling tests
to implementation.” [2]

The problems he refers to are real. Stub objects add an

extra layer of coupling between test and implementation as
they depend on more than the classes external interface, they
couple to calls the object makes internally. Thus, should the
inner workings of a class be changed the stub may need
changing, even if the interface to the class and its behaviour
remain the same.

Mock objects increase the coupling further by asserting
on the specifics of the class’s implementation: More
specifically the interactions it makes with collaborating
classes.

There have been successful attempts to reduce this
coupling. The Mockito framework [5,6] represented a
significant evolution over its predecessors by encouraging
programmers to stub first, get the test running, and then layer
expectations on top. This change does not physically reduce
the coupling between test and implementation but it
encourages programmers not to form unnecessary ones.

However a further problem exists: Current languages
require the stubbing of objects that may not affect the output
of the test, for example because they provide a reference that
plays a role in the object’s function but not one pertinent to
the section under test. To address these a compiler change is
needed. The Quilt compiler determines the minimum set of
methods that require stub substitution at compile time. In this

way the number of stubbed methods can be reduced and
hence so is the coupling between test and implementation.

B. The Testing Barrier: It’s hard to test if you don’t test
first.
There are a variety of things that a developer can do

when writing “program first” that will make that code very
hard to test in an isolated way. There are two common
symptoms of this:

(a) The programmer must refactor the code to inject

dependencies into the class so that test
implementations (mocks, stubs etc) can be used instead
of the real ones.

(b) Tests require a lot of setup code in which multiple stub
objects, often unrelated to the test condition, need to be
injected. The number of stubs that need to be created
becomes disproportionate to the amount of code under
test. The testing process then takes a disproportionately
large amount of time. Also the larger number of stub
objects ties the class and test together more tightly. As
described in the previous section, this coupling makes
the class very hard to refactor: The test code is brittle.

These problems can be addressed by writing well-formed
Object Oriented code. One technique for doing this is
“listening to the tests” [9] and rigorously applying the law of
Demeter [10]. However significant expertise is needed to
practice this technique. Quilt however makes it very easy to
isolate the functionality under test, even in conditions such as
these, helping to ensure that the barrier for testing is as low
as possible.

Figure 4. A Quilt application, split into a patchwork of independently
testable units composed of groups of classes.

IV. WHAT MAKES QUILT DIFFERENT?
(a) The compiler forces the isolation of testable units.
(b) Methods are isolated (stubbed), not Classes.
(c) Methods that do not return state are automatically

stubbed. Methods that do return state, or mutate passed
parameters, cause compilation failure if a stub has not
been provided.

(d) The unit of isolation can be one or many Classes.
(e) There is no need to inject dependencies for the pupose of

testing.

(f) The barrier for testing is very low: Even existing code is
easier to isolate and test3.

The Quilt application has two modes of execution: Unit

tests, which test Patches of code in isolation, and Quilt tests
that exercise the entire application. The arrangement of
classes, grouped as Patches, and the Seams that separate
them are shown in Figure 4.

Figure 5. Calls across Seams are stubbed by the compiler. If a return
object is required the programmer must provide one in the test.

During compilation the Quilt compiler looks for methods
that traverse Seams (the barriers between groups of
independently tested classes). If such calls into different
Patches return (or mutate) state then the Quilt compiler
necessitates the programmer stubbing the method from
inside the test. This is shown in Figure 5.

A. Compilation Ensures that Stubs are Required only if
they Affect the Output of the Test.
Quilt ensures that a test and its corresponding class (or

groups of classes, known as a Patch) are independently
executable. That is to say that a class, or Patch, can be tested
as an isolated unit, without depending on any other part of
the code base. Quilt does this by isolating all calls that cross
a Patch boundary (known as a Seam) to determine the
minimum set of stubs required for the test to execute. If the
method call is deemed by the compiler to have an effect on
the execution of the class under test then the programmer is
prompted with a compilation failure. This failure requires
that a stub be created so that the test can run in isolation. The
Quilt compiler is careful to only force the programmer to
provide interactions that are absolutely necessary for test
execution: Cross-Seam calls that affect state in a way that
can influence the test output.

This process will likely seem familiar to those
accustomed to Mocking frameworks and the practice of
Interaction Testing [9]. However because the compiler is
test-aware Quilt is able to reduce the amount of code
(number of stubs) needed to make the test run in isolation.
Reducing the number of stubs reduces the coupling between
test and source making the language easier to refactor.

To demonstrate this, consider the Java code in Example
1(a). This code is tested using Quilt: Example 1(b), and
Java/Mockito: Example 1(c).

3 It should be noted that we are not advocating the writing of tests last.

Example 1(a): A class we wish to test in Pseudo Java (and Mockito)

class ConstructionSite{
Digger digger = new Digger();

 Mixer mixer = new CementMixer();
 Foreman foreman = new Foreman();

 ConstructionSite(){}

 ConstructionSite(Digger d, Mixer m, Foreman f){
 digger = d;
 mixer = m;
 foreman = f;
 }

 boolean buildFoundation(Bricks bricks){

 Cement cement = mixer.mix();
 Foundation foundation = digger.dig();
 BrickLayer layer = foreman.getLayer();

 if(!cement.isSolid() && bricks.size()> 100){
 Posts posts = layer.lay(bricks, cement);
 foundation.fill(posts);
 return true;
 }
 return false;

 }}

Example 1(b): A Quilt test for this class

shouldBuildFoundationsWithLotsOfBricksAndSlowDrying
Cement(){

Seam:
 cement.isSolid() returns false;
 bricks.size returns 100;

AssertTrue:
new ConstructionSite().buildFoundation(..);

}}

This Quilt test does not require the setup of all dependent

classes used by the class under test: Only ones methods that
return state that contributes to the test output are required. In
this case there are only the two of significance: the two
inside the if-condition. However, if either of these methods
are omitted from the test (i.e. the programmer does not
provide either real or stub implementations), the quilt
compiler will fail with a error such as “Compliation
Failure: Return value required for Seam transition
cement.isSolid()”

Implementing a similar test in a language like Java, as in
Example 1(c), requires more code, and importantly more
stub objects. Each stub object and method increases the
coupling between the test and the implementation. Thus it
should be apparent that the Quilt test has far less coupling to
the code under test than it’s Java counterpart.

The Quilt compiler works by evaluating whether each
method call, which crosses a seam boundary, changes the
internal state in a way that can affect the output of the test.
This necessitates that the compiler execute bottom up.

In the above Example 1(a) the foundation.fill(..)
method is analysed first (as it is at the bottom of the stack).
The compiler deduces that it cannot affect the output of the
test. This implies that the posts variable is also irrelevant

and hence there is no need to consider the layer.lay(..)
method either.

Example 1(c): A Java/Mockito version of the same test

@Test
shouldBuildFoundationsWithLotsOfBricksAndSlowDrying
Cement(){
Digger digger = mock(Digger.class);
CementMixer mixer = mock(CementMixer.class);
Foreman foreman = mock(Foreman.class);
Cement cement = mock(Cement.class);
BrickLayer layer = mock(BrickLayer.class);
Foundation foundation = mock(Foundation.class);

when(mixer.mix()).thenReturn(cement);
when(digger.dig()).thenReturn(foundation);
when(cement.isSolid()).thenReturn(Boolean.FALSE);
when(foreman.getLayer()).thenReturn(layer);

ConstructionSite site = new
ConstructionSite(digger, mixer, foreman);
assertTrue(site.buildFoundation(new Bricks(101)))

}

Moving further up the stack, the compiler recognises that
the methods cement.isSolid(..) and bricks.size(..)
will affect the output of the test and hence the complier
ensures that these are provided by either real objects (which
must be in the same Patch) or through stub methods provided
by the programmer in the test. If the programmer does not
provide an implementation of these methods a compiler
failure occurs. The compilation process is covered in more
detail in Section VI(A)

B. Quilt Stubs Methods not Objects
Quilt stubs methods not objects. This avoids the need for

stub objects to be created as part of the test. Only the
methods need to be stubbed, and only if they cause a state
change that affects the test output.

Example 1(b) includes a Quilt stub that must be declared
as it returns state that affects the output of the test:

cement.isSolid() returns false;

No stub object is declared. The variable name, cement,

provides a convenient way for the programmer to
communicate the location of the method to be stubbed. The
variable, cement, is defined in the program code only. The
Quilt compiler makes reference to the scope of the program
when compiling the test (if the variable name is ambiguous
compilation failure occurs).

In this example only the method isSolid is stubbed.
There is no need for the programmer to create the Cement
object itself. There is no need for the programmer to create
the CementMixer object either (which the cement came
from). This is contrasted by the Java/Mockito version in
Example 1(c), which needs these objects to be created in the
test.

C. Quilt Avoids Mock Object Chains
As Quilt stubs method calls, object chains can be stubbed

in a single line. For example consider the code:

A a = input.do();
B b = a.do();
String x = b.do();

In current programming languages isolating this code

require the creation of three separate stub objects and the
stubbing of each method individually. However in Quilt it
can be stubabed in a single line:

input.do().do().do() returns “foo”;

It should be noted that such object chains are considered bad
programming practice [10] and should be avoided. The
feature is included in the language only as a result of the
founding tenet: The language should make testing any style
of code as easy as possible.

D. The Unit Under Test Should Be More Than One Class
One of the arguments levelled against the Mockist form

of TDD is that it introduces too much coupling between test
and implementation [2,8]. This has been noted elsewhere in
the developer community [4] where developers report that
the single “Test, Pass, Refactor” cycle inhibits the design
process.4 We have argued previously [3] that this coupling
can be mitigated by isolating groups of classes to be tested
as an autonomous unit.

Both class and test definitions in Quilt must be assigned
to a Patch. This is loosely comparable to a package in Java
or Namespaces in C# except that a Patch is a group of
classes that will be tested as a single autonomous unit and
the compiler forces isolation (through stubs) along Seams.

By increasing the size of the testable unit the ratio
between classes and Seams is reduced, which in turn
reduces coupling, making tests less brittle. Put another way,
mocks and stubs always increase coupling (mocks more so
than stubs) as they tie themselves to a facet of the classes’
implementation. By increasing the size of the testable unit
(the number of classes being tested together), fewer stubs
are needed to isolate the functionality and hence there is less
coupling. This is the driver behind the concept of Patches
being multiple classes in Quilt.

E. Quilt Tests: Putting all the bits together in combined
execution.
Executing the various Patches in isolation is an

important part of the development process and provides fast,
accurate feedback on failures that may occur. However a set
of tests that verify the behaviour of individual Patches will
not ensure the correct running of the program as a whole.
For this reason Quilt has Quilt Tests.

Quilt tests allow a set of Patches to be run in a single test
with or without the use of external libraries as shown in
Figure 6. By default execution of such tests will include
external calls to external libraries. Quilt’s Aspect-like stub

4 This is not the opinion of the authors. It is simply an example of TDD
only facilitating a single style of development.

declaration model allows these to be overridden should they
need to be. This model is similar to the provisioning of stubs
for unit tests described in a previous section.

Figure 6. A Quilt test running a set of patches end to end. The black
circles represent a library that is not part of the compilation unit but is

exercised as part of this test

V. IMPLEMENTATION CONSIDERATIONS
Quilt can be implemented either as a stand-alone

language or as an alteration to the compilation process of an
existing imperative language such as Java. In the later case
the compilation of program and tests would be segregated to
facilitate changes to the test semantics.

A. Quilt Compiler
A key feature of Quilt is the compiler’s ability to

determine the minimum user input required to isolate the
code under test. To do this the compiler must perform Static
Analysis to determine which Seam transitions can affect the
output and hence require substitution (aka stubbing). This
process is similar to Abstract Interpretation [1]. Full details
of the implementation are beyond the scope of this paper but
a short overview is given.

Data can flow across a seam boundary both through
parameters (going outwards) and through return variables
(coming inwards). The quilt compiler attempts to determine
whether either outward or inward state is relevant to the
test’s execution. The process includes the following steps:

• The compiler is executed against a single Patch. This

being a group of related classes and tests that must
be tested in isolation.

• The compiler lists all points at which program code is
called from the test cases. It iterates through each
one in turn.

• For each call it traverses the possible paths execution
can take. If static state is used to drive the program
from the test it can be used to reduce the possible
execution paths.

• Every time execution leaves the scope of the Patch,
through a method call that returns state, the call is
flagged for substitution and the returned variable is
flagged as being a ‘substituted variable’. The
parameters passed are also flagged. This is a breadth
first search.

• The usage of each substituted variable in the Patch is
analysed to see if it affects the test result. This is
done bottom up.

• If a method that returns a substituted variable is found
to not affect the test output it is ignored (no stub
needs to be provided).

• The next level of the search identifies parameters
passed to cross-seam methods to see if they are
mutated. If they are, and the stub has not been
provided in the test, a compilation failure occurs.
This process continues to a maximum depth set in
the compiler.

• The compiler has two modes of execution: Optimistic
and Pessimistic. The optimistic model searches for
the mutation of parameters passed to cross-seam
methods and, on completion, assumes that no
stubbing is necessary. Pessimistic mode assumes
stubbing is necessary.

This type of breadth-first, bottom up evaluation of

execution paths allows paths to be eliminated quickly if they
do not affect the test output. A maximum depth is used to
avoid a combinatorial explosion in paths. When the compiler
reaches this depth it ceases further analysis.

It should be noted that a significant simplification could
be made to the compiler method by forcing parameters to be
immutable in the Quilt language, as is done in some
functional languages. However we believe this would limit
the applicability of the language.

VI. CONCLUSIONS
This paper explores how a relatively small amount of

change could facilitate better program testing. Quilt
represents an accessible, test-driven language designed to
make testing as easy and pain-free as possible. The compiler
significantly reduces coupling between test and
implementation by not requiring the declaration of stubs that
are not relevant to the test. The stub definition language is
both terse and crosscutting. There is no need to inject
dependencies for testing purposes as Methods are mocked,
not Objects. Finally, Quilt encourages the testing of groups
of classes as units rather than the traditional one-class-per-
test paradigm, reducing coupling further. The result is a
language that opens TDD to a far broader audience than
traditional mock-driven methods can. It would be possible to
implement Quilt as either a stand-alone language or as an
addition to an existing compiler.

VII. FURTHER WORK

A. An Empirical Study of the Benefits of Applying
Execution Path Dependency Analysis to a Test Driven
Code Base.
Static code analysis of test and program code for a Test

Driven code base should be used to determine the quantity
of stub objects, and ensuing coupling, that would be
removed through the use of Execution Path Dependency
Analysis.

B. A Fuller Description of the Asserting of Program State
and Interactions.
The description of Quilt has focussed on test isolation

with only minimal consideration for how state and
interactions are asserted upon.

C. Consideration of the Concepts of BDD and in
particular the Implementatinos of Rspec and Cucumber
There are a number of current testing approaches that

have not been explored. RSpec and Cucumber are testing
tools derived from the Behavioural Driven Development
(BDD) movement [7] and focus on tests as documents
describing the behaviours of the system.

[1] On the Design of Generic Static Analyzers for Imperative Languages

(TR), with Patricia M. Hill, Andrea Pescetti, and Enea Zaffanella.
Technical Report. Quaderno 485 (2008), Department of Mathematics,
University of Parma, Italy.

[2] Mocks Aren’t Stubs, Martin Fowler,
http://martinfowler.com/articles/MocksArentStubs.html

[3] Refactoring Tested Code: Has Mocking Gone Wrong? Benjamin
Stopford, 1st REFTEST Network Workshop, Brunel University,
London, 28th January 2010

[4] http://searchsoftwarequality.techtarget.com/news/1285151/Barriers-
remain-for-test-driven-development

[5] Mockito: http://en.kioskea.net/
[6] http://monkeyisland.pl/2008/02/01/deathwish/
[7] http://en.wikipedia.org/wiki/Behavior_Driven_Development
[8] http://tech.groups.yahoo.com/group/easymock/message/1261
[9] Growing Object-Oriented Software Guided By Tests Steve Freeman,

Nat Pryce, Addison Wesley 2009
[10] The Law of Demeter: http://www.ccs.neu.edu/home/lieber/LoD.html
[11] JMock http://www.jmock.org
[12] EasyMock http://www.easymock.org
[13] http://en.wikipedia.org/wiki/Proxy_pattern

