
©2011 Azul Systems, Inc.	 	 	 	 	 	

The Application Memory 
Wall

Thoughts on the state of the art in 
Garbage Collection

Gil Tene, CTO & co-Founder, Azul Systems



©2011 Azul Systems, Inc.	 	 	 	 	 	

About me: Gil Tene

co-founder, CTO  
@Azul Systems

Have been working on 
a “think different” GC 
approaches since 2002

Created Pauseless & C4 
core GC algorithms 
(Tene, Wolf)

A Long history building 
Virtual & Physical 
Machines, Operating 
Systems, Enterprise 
apps, etc... 

* working on real-world trash compaction issues, circa 2004



©2011 Azul Systems, Inc.	 	 	 	 	 	

About Azul

We make scalable Virtual 
Machines

Have built “whatever it takes 
to get job done” since 2002

3 generations of custom SMP 
Multi-core HW (Vega)

Now Pure software for 
commodity x86 (Zing)

“Industry firsts” in Garbage 
collection, elastic memory, 
Java virtualization, memory 
scale

V

C4



High level agenda

The original Memory Wall, and some others

The Application Memory Wall

Garbage Collection discussion

How can we break through the wall?

The C4 collector: What an actual solution looks like...



The original Memory Wall + others



The original Memory Wall
“Hitting the Memory Wall: Implications of the Obvious”

Wm. A. Wolf, Sally A. McKey, Computer Science Report No. 
CS-94-48, December 1994

Widely Quoted and referenced since 

CPUs are getting faster at Moore’s law rates, but:
Memory bandwidth is growing at much slower pace

Memory latency is improving at much slower pace

Anticipated result: Applications will become memory 
bandwidth bound

Prediction [1994]: Wall will be hit within a decade



Additional predicted walls
“Frequency Wall”

CPU Frequency will not keep growing at same rate, limiting single 
threaded speed growth 

Hardware shift in mid-2000s: moved to multi-core

“Power Wall”
The ability to cool chips will limit speed and frequency

Hardware shift in mid-2000s: multi-core, power-efficient designs

“Concurrency Wall”
Limited ability to make use of many cores in common programs

Much work being done to improve concurrency



Have these walls been hit?
Do Applications actually hit any of these walls?

Predictions: 1994 ... 2004: Majority of applications 
should have hit against the predicted walls by now... 

Reality: We came close, and backed [way] off 
Application instances don’t use available memory bandwidth

Application instances don’t use available memory capacity

Application instances don’t use available cores

We hit another wall...

The “Application Memory Wall”



The “Application Memory Wall”



Memory use 
 How many of you use heap sizes of:

 F   more than ½ GB?

 F   more than 1 GB?

 F   more than 2 GB?

 F   more than 4 GB?

 F   more than 10 GB?

 F   more than 20 GB?

 F   more than 50 GB?



Reality check: servers in 2011

Retail prices, major web server store (US $, Nov. 2011)

Cheap (≈ $1.2/GB/Month), and roughly linear to ~1TB

10s to 100s of GB/sec of memory bandwidth

24 vCore, 96GB server ≈  $5K

32 vCore, 256GB server ≈ $14K

64 vCore, 512GB server ≈ $27K

80 vCore, 1TB server ≈ $49K



The Application Memory Wall
A simple observation:

Application instances appear to be unable to 
make effective use of modern server memory 
capacities

The size of application instances as a % of a 
server’s capacity is rapidly dropping 



Maybe 1+ to 4+ GB is simply enough?

We hope not (or we’ll all have to look for new jobs soon) 

Plenty of evidence of pent up demand for more heap:  
Common use of lateral scale across machines

Common use of “lateral scale” within machines

Use of “external” memory with growing data sets

Databases certainly keep growing

External data caches (memcache, JCache, Data grids)

Continuous work on the never ending distribution problem

More and more reinvention of NUMA

Bring data to compute, bring compute to data



©2011 Azul Systems, Inc.	 	 	 	 	 	

How much memory do applications need?

“640KB ought to be enough for anybody”

WRONG!

So what’s the right number?
6,400K?
64,000K?
640,000K?
6,400,000K?
64,000,000K?

There is no right number

Target moves at 50x-100x per decade 

“I've said some stupid things and 
some wrong things, but not that. 
No one involved in computers 
would ever say that a certain 
amount of memory is enough for 
all time …” - Bill Gates, 1996



©2011 Azul Systems, Inc.	 	 	 	 	 	

“Tiny” application history

100KB apps on a ¼ to ½ MB Server

10MB apps on a 32 – 64 MB server

1GB apps on a 2 – 4 GB server

??? GB apps on 256 GB
Assuming Moore’s Law means:

 “transistor counts grow at ≈2x 
every ≈18 months”

It also means memory size grows
 ≈100x every 10 years

2010

2000

1990

1980

“Tiny”: would be “silly” to distribute

Application 
Memory Wall



©2011 Azul Systems, Inc.	 	 	 	 	 	

What is causing the
Application Memory Wall?

Garbage Collection is a clear and dominant cause

There seem to be practical heap size limits for 
applications with responsiveness requirements

[Virtually] All current commercial JVMs will exhibit a 
multi-second pause on a normally utilized 2-4GB heap.

It’s a question of “When” and “How often”, not “If”.

GC tuning only moves the “when” and the “how often” around

Root cause: The link between scale and responsiveness 



What quality of GC is responsible
for the Application Memory Wall?

It is NOT about overhead or efficiency:
CPU utilization, bottlenecks, memory consumption and utilization

It is NOT about speed
Average speeds, 90%, 99% speeds, are all perfectly fine

It is NOT about minor GC events (right now)
GC events in the 10s of msec are usually tolerable for most apps

It is NOT about the frequency of very large pauses

It is ALL about the worst observable pause behavior

People avoid building/deploying visibly broken systems



GC Discussion



Framing the discussion:
Garbage Collection at modern server scales

Modern Servers have 100s of GB of memory

Each modern x86 core (when actually used) produces 
garbage at a rate of ¼ - ½  GB/sec +

That’s many GB/sec of allocation in a server

Monolithic stop-the-world operations are the cause of 
the current Application Memory Wall



Some GC Terminology



A Basic Terminology example:
What is a concurrent collector?

A Concurrent Collector performs garbage collection 
work concurrently with the application’s own execution

A Parallel Collector uses multiple CPUs to perform 
garbage collection



A Concurrent Collector performs garbage collection 
work concurrently with the application’s own execution

A Parallel Collector uses multiple CPUs to perform 
garbage collection

Classifying a collector’s operation

An Incremental collector performs a garbage collection 
operation or phase as a series of smaller discrete 
operations with (potentially long) gaps in between

A Stop-the-World collector performs garbage 
collection while the application is completely stopped

Mostly means sometimes it isn’t (usually means a 
different fall back mechanism exists)



What’s common to all GC mechanisms?

Identify the live objects in the memory heap

Reclaim resources held by dead objects

Periodically relocate live objects

Examples:

Mark/Sweep/Compact (common for Old Generations)

Copying collector (common for Young Generations)



Generational Collection

Generational Hypothesis: most objects die young

Focus collection efforts on young generation:

Usually using a copying collector

Promote objects that live long enough to old generation

All known young generation collectors compact

Tends to be (order of magnitude) more efficient

Great way to keep up with high allocation rate

ALL commercial JVMs use generational collectors

Necessary for keeping up with processor throughput



Mutator
Your program…

Parallel
Can use multiple CPUs

Concurrent
Runs concurrently with program

Pause
A time duration in which the 
mutator is not running any code

Stop-The-World (STW)
Something that is done in a pause

Monolithic Stop-The-World
Something that must be done in 
it’s entirety in a single pause

Useful terms for discussing 
garbage collection

Generational
Collects young objects and long lived 
objects separately.

Promotion
Allocation into old generation

Marking
Finding all live objects

Sweeping
Locating the dead objects

Compaction
Defragments heap
Moves objects in memory
Remaps all affected references
Frees contiguous memory regions



Heap population (aka Live set)
How much of your heap is alive

Allocation rate
How fast you allocate

Mutation rate
How fast your program updates 
references in memory

Heap Shape
The shape of the live object graph
* Hard to quantify as a metric...  

Object Lifetime
How long objects live

Useful metrics for discussing 
garbage collection

Cycle time
How long it takes the collector to free 
up memory

Marking time
How long it takes the collector to find 
all live objects

Sweep time
How long it takes to locate dead 
objects
* Relevant for Mark-Sweep 

Compaction time
How long it takes to free up memory 
by relocating objects
* Relevant for Mark-Compact



GC Problems



The things that seem “hard” to do in GC
Robust concurrent marking

References keep changing
Multi-pass marking is sensitive to mutation rate
Weak, Soft, Final references “hard” to deal with concurrently

[Concurrent] Compaction…
It’s not the moving of the objects…
It’s the fixing of all those references that point to them
How do you deal with a mutator looking at a stale reference?
If you can’t, then remapping is a [monolithic] STW operation 

Young Generation collection at scale
Young Generation collection is generally monolithic, Stop-The-World
Young generation pauses are only small because heaps are tiny
A 100GB heap will regularly see muli-GB of live young stuff…



Delaying the inevitable

Delay tactics focus on getting “easy empty space” first
This is the focus for the vast majority of GC tuning

Most objects die young [Generational]
So collect young objects only, as much as possible
But eventually, some old dead objects must be reclaimed

Most old dead space can be reclaimed without moving it 
[e.g. CMS] track dead space in lists, and reuse it in place
But eventually, space gets fragmented, and needs to be moved

Much of the heap is not “popular” [e.g. G1, “Balanced”]
A non popular region will only be pointed to from a small % of the heap
So compact non-popular regions in short stop-the-world pauses
But eventually, popular objects and regions need to be compacted 



©2011 Azul Systems, Inc.	 	 	 	 	 	

Classifying common collectors



©2011 Azul Systems, Inc.	 	 	 	 	 	

HotSpot™ ParallelGC
Collector mechanism classification

Monolithic Stop-the-world copying NewGen

Monolithic Stop-the-world Mark/Sweep/Compact OldGen



©2011 Azul Systems, Inc.	 	 	 	 	 	

HotSpot™ ConcMarkSweepGC (aka CMS)
Collector mechanism classification

Monolithic Stop-the-world copying NewGen (ParNew)

Mostly Concurrent, non-compacting OldGen (CMS)
Mostly Concurrent marking

Mark concurrently while mutator is running
Track mutations in card marks
Revisit mutated cards (repeat as needed)
Stop-the-world to catch up on mutations, ref processing, etc.

Concurrent Sweeping
Does not Compact (maintains free list, does not move objects)

Fallback to Full Collection (Monolithic Stop the world).
Used for Compaction, etc. 



©2011 Azul Systems, Inc.	 	 	 	 	 	

HotSpot™ G1GC (aka “Garbage First”) 
Collector mechanism classification

Monolithic Stop-the-world copying NewGen

Mostly Concurrent, OldGen marker
Mostly Concurrent marking

Stop-the-world to catch up on mutations, ref processing, etc.

Tracks inter-region relationships in remembered sets

Stop-the-world mostly incremental compacting old gen 
Objective: “Avoid, as much as possible, having a Full GC…”
Compact sets of regions that can be scanned in limited time
Delay compaction of popular objects, popular regions

Fallback to Full Collection (Monolithic Stop the world).
Used for compacting popular objects, popular regions, etc.



How can we break through the 
Application Memory Wall?



©2011 Azul Systems, Inc.	 	 	 	 	 	

We need to solve the right problems

Focus on the causes of the Application Memory Wall
Root cause: Scale is artificially limited by responsiveness

Responsiveness must be unlinked from scale
Heap size, Live Set size, Allocation rate, Mutation rate

Responsiveness must be continually sustainable
Can’t ignore “rare” events

Eliminate all Stop-The-World Fallbacks
At modern server scales, any STW fall back is a failure



©2011 Azul Systems, Inc.	 	 	 	 	 	

The problems that need solving
(areas where the state of the art needs improvement)

Robust Concurrent Marking
In the presence of high mutation and allocation rates
Cover modern runtime semantics (e.g. weak refs)

Compaction that is not monolithic-stop-the-world 
Stay responsive while compacting many-GB heaps
Must be robust: not just a tactic to delay STW compaction
[current “incremental STW” attempts fall short on robustness]

Non-monolithic-stop-the-world Generational collection  
Stay responsive while promoting multi-GB data spikes
Concurrent or “incremental STW” may be both be ok
Surprisingly little work done in this specific area



©2011 Azul Systems, Inc.	 	 	 	 	 	

Azul’s “C4” Collector 
Continuously Concurrent Compacting Collector

Concurrent, compacting new generation

Concurrent, compacting old generation

Concurrent guaranteed-single-pass marker
Oblivious to mutation rate
Concurrent ref (weak, soft, final) processing

Concurrent Compactor
Objects moved without stopping mutator
References remapped without stopping mutator
Can relocate entire generation (New, Old) in every GC cycle

No stop-the-world fallback
Always compacts, and always does so concurrently



Sample responsiveness improvement

๏ SpecJBB + Slow churning 2GB LRU Cache
๏ Live set is ~2.5GB across all measurements
๏ Allocation rate is ~1.2GB/sec across all measurements



Instance capacity test: “Fat Portal”
CMS: Peaks at ~ 3GB / 45 concurrent users

* LifeRay portal on JBoss @ 99.9% SLA of 5 second response times



©2011 Azul Systems, Inc.	 	 	 	 	 	

Instance capacity test: “Fat Portal”
C4: still smooth @ 800 concurrent users 



©2011 Azul Systems, Inc.	 	 	 	 	 	

Java GC tuning is “hard”…
Examples of actual command line GC tuning parameters:

Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M -XX:MaxNewSize=2g 
        -XX:NewSize=1g -XX:SurvivorRatio=128 -XX:+UseParNewGC 
        -XX:+UseConcMarkSweepGC -XX:MaxTenuringThreshold=0
        -XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled
        -XX:+UseCMSInitiatingOccupancyOnly -XX:ParallelGCThreads=12 
        -XX:LargePageSizeInBytes=256m …

Java –Xms8g –Xmx8g –Xmn2g -XX:PermSize=64M -XX:MaxPermSize=256M
-XX:-OmitStackTraceInFastThrow -XX:SurvivorRatio=2 -XX:-UseAdaptiveSizePolicy 
-XX:+UseConcMarkSweepGC -XX:+CMSConcurrentMTEnabled
-XX:+CMSParallelRemarkEnabled -XX:+CMSParallelSurvivorRemarkEnabled
-XX:CMSMaxAbortablePrecleanTime=10000 -XX:+UseCMSInitiatingOccupancyOnly
-XX:CMSInitiatingOccupancyFraction=63 -XX:+UseParNewGC –Xnoclassgc …



©2011 Azul Systems, Inc.	 	 	 	 	 	

The complete guide to
Zing GC tuning

java -Xmx40g



C4 Algorithm fundamentals



 C4 algorithm highlights
Same core mechanism used for both generations

Concurrent Mark-Compact

A Loaded Value Barrier (LVB) is central to the algorithm
Every heap reference is verified as “sane” when loaded
“Non-sane” refs are caught and fixed in a self-healing barrier

Refs that have not yet been “marked through” are caught
Guaranteed single pass concurrent marker

Refs that point to relocated objects are caught
Lazily (and concurrently) remap refs, no hurry
Relocation and remapping are both concurrent

Uses “quick release” to recycle memory
Forwarding information is kept outside of object pages
Physical memory released immediately upon relocation
“Hand-over-hand” compaction without requiring empty memory



The C4 GC Cycle



Mark Phase
Mark phase finds all live objects in the Java heap

Concurrent, predictable: always complete in a single pass

Uses LVB to defeat concurrent marking races
Tracks object references that have been traversed by using an 
“NMT” (not marked through) metadata state in each object reference

Any access to a not-yet-traversed reference will trigger the LVB

Triggered references are queued on collector work lists, and 
reference NMT state is corrected

“Self healing” corrects the memory location that the reference was 
loaded from

Marker tracks total live memory in each memory page
Compaction uses this to go after the sparse pages first 

(But each cycle will tend to compact the entire heap…)



Relocate Phase
Compacts to reclaim heap space 
occupied by dead objects in “from” 
pages without stopping mutator

Protects “from” pages. 

Uses LVB to support concurrent 
relocation and lazy remapping by 
triggering on any access to 
references to “from” pages 

Relocates any live objects to newly 
allocated “to” pages

Maintains forwarding pointers 
outside of “from” pages

Virtual “from” space cannot be 
recycled until all references to 
relocated objects are remapped 

“Quick Release”: Physical memory 
can be immediately reclaimed, and 
used to feed further compaction or 
allocation



Remap Phase
Scans all live objects in the heap

Looks for references to previously relocated objects, 
and updates (“remaps”) them to point to the new object 
locations

Uses LVB to support lazy remapping
Any access to a not-yet-remapped reference will trigger the LVB

Triggered references are corrected to point to the object’s new 
location by consulting forwarding pointers

“Self healing” corrects the memory location the reference was 
loaded from

Overlaps with the next mark phase’s live object scan
Mark & Remap are executed as a single pass



The C4 GC Cycle



Summary

The Application Memory Wall is HERE, NOW
Driven by detrimental link between scale and responsiveness

Solving a handful of problems can lead to breakthrough
Robust Concurrent Marking
[Concurrent] Compaction
non-monolithic STW young generation collection
All at modern server-scales

Solving it will [hopefully] allow application to resume 
their natural rate of consuming computer capacity



Implications of breaking past the 
Application Memory Wall

Improve quality of current systems:
Better & consistent response times, stability & availability
Reduce complexity, time to market, and cost

Scale Better:
Large or variable number of concurrent users
High or variable transaction rates
Large data sets

Change how things are done:
Aggressive Caching, in-memory data processing
Multi-tenant, SaaS, PaaS
Cloud deployments

Build applications that were not possible before…



©2011 Azul Systems, Inc.	 	 	 	 	 	

How can we break through the 
Application Memory Wall?

Simple: Deploy Zing 5.0 on Linux



©2011 Azul Systems, Inc.	 	 	 	 	 	

Q & A

Simple: Deploy Zing 5.0 on Linux

How can we break through the 
Application Memory Wall?

http://www.azulsystems.com

http://www.azylsystems.com
http://www.azylsystems.com

