
Click to edit Master title style

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

Adaptive Server Performance and
Tuning

Barclays Capital
Lunchtime “Brown Bag”

Performance & Tuning for Developers
Refreshers ~ Opinions ~ Updates ~ Tips

Mark Hudson, Sybase UK Proof of Concept Team
Alan O’Neill, Account Manager

© Sybase 2005

Afternoon Tea

2

Agenda
QUERY TUNING & TROUBLESHOOTING

Know your basics ~ tables, indexes, sizes, actuals & estimates
A few showplan gotchas ~ and the future of showplan
The famous (infamous) “302, 310 and Friends” trace flags
Query tuning ~ approach and decision flow
Taster demonstration of Database Expert (DB Expert)

I thought
showplan was an

estate agent’s
brochure till I

discovered
Sybase

3

KNOW YOUR BASICS
Rules of thumb for clustered and nonclustered indexes
Notional and real logical and physical IO rates
How big is big when it comes to Sybase tables and databases ?
The terrible twins ~ sp_spaceused and sp_estspace

4

Clustered & Nonclustered Indexes
Rules of Thumb

Clustered indexes
Generally slower to create because involve sorting
Clustered index order strictly maintained for datapage locking
Forwarded rows occur in general for dataonly locking
For datapage ~ leaf level contains page pointers

Hence leaf level rows in 1:n with data rows ~ relatively small
For dataonly ~ leaf level contains row pointers

Little difference from nonclustered in this case
Traversal of leaf level largely tied to ordered traversal of data level

Nonclustered indexes
Mostly the opposite !
Leaf level contains row pointers
Hence leaf level rows in 1:1 with data rows ~ relatively large
Ordered traversal of leaf level scattered access to data level
Leaf levels themselves always strictly ordered ~ for clustered too

5

Logical & Physical IOs
Notional versus Real

Logical IO
Every read or write without exception via a data cache
Cache memory access = logical IO often written “lp”
Notional value 2 ms (millisec) used by optimizer
Real values anywhere down to 0.02 ms (50000/sec)

Physical IO
Every write (except some in tempdb) goes to disk
A read may or may not come from disk always via a cache
Often written “pp”
Notional value 18ms used in optimization
Real values anywhere down to 0.2 ms (5000/sec)

It’s the ratio that matters
9:1 assumed, ? 5:1 – 50:1 in reality ?

e.g. in 302 etc. trace output

tunable ! yes really ...

6

Sybase Tables & Databases
How Big is Big ? - 1

Always worth knowing your hardware IO rates
If in doubt fairly conservative these days to use 2000 pp, 20000 lp
Always try to calculate basic scan time for key tables

EXAMPLE
2,000,000 rows ~ 10 rows/page (don’t forget fillfactor)
200,000 pages 200,000 / 512 = approx. 400 MB (for 2k page size)
basic scan time 100 seconds physical, 10 seconds logical

• Use this information for the biggest tables
• Sanity check against more detailed measurements
• Intuitive understanding of data
• Never trust blindly what any tool or test is telling you
• Second guess the broad principles behind any query and be able to

visualize / back of an envelope sketch steps
• Basic scan times relevant ~ of course not whole story ~ for:

• Index re(creates) sorting can be major overhead of course
• Table scans for various purposes e.g. brute force batch jobs

7

Sybase Tables & Databases
How Big is Big ? - 2

So how big really is big ?
Depends on the context

EXAMPLES ~ all for 10 rows/page
a) 2,000,000 rows 200,000 2k pages 100 sec phys, 10 sec logical
b) 20,000,000 2,000,000 17 minutes, 1.7 minutes
c) 200 million 20 million nearly 3 hours, 17 minutes
d) 2 billion 200 million over 1 day, nearly 3 hours

• These might be big for
• a) being table scanned in the innermost nested loop of a join
• b) being table scanned in any time critical interactive user query
• c) driving any batch job or (re-)creating any index for testing ?
• d) recreating any index in production even planned well ahead

8

The Terrible Twins
sp_estspace

Purpose
Take an empty schema predict table, index sizes

Parameter usage
sp_estspace

table_name,
number_of_rows,
fill_factor,
cols_to_max,
textbin_len,
iosec,
pagesize

• Output includes
• Reasonably plausible index creation times
• Reliable size estimates for each level of each index

tricky ...

default still 30/second but gotcha now gone

9

The Terrible Twins
sp_spaceused

Purpose
Take an actual table show data & index size allocated

Parameter usage
sp_spaceused

[table_name],
[1]

• Output includes
• Space allocated – slightly higher for various reasons
• Data and index space used
• With “1” modifier index by index breakdown

don’t forget ! ... very handy

10

The Terrible Twins
sp_spaceused ~ alternatives

• Consider using your own more user friendly local system proc
or script producing output like this

i NumRows Isize Dsize TabIdx
--- ---------- ----- ----- --
0 11471119 0.000 393.0 FloatingRatesValues.FloatingRatesValues
0 4036452 0.000 315.3 CurvesRatesNRHist.CurvesRatesNRHist
0 6703476 0.000 242.4 PairsQuotes.PairsQuotes
0 1460892 0.000 219.5 SwapSchedule.SwapSchedule
0 190016 0.000 185.5 FxSwapDeals.FxSwapDeals
0 256815 0.000 167.1 IamDeals.IamDeals
0 321935 0.000 161.0 SpotDeals.SpotDeals
...
2 0 0.193 0.000 StrategiesDeals.StrategiesDealsIdx1
2 0 0.207 0.000 FoldersAllowed.FoldersAllowedIdx1
2 0 0.230 0.000 FraDeals.FraDealsIdx1

• Would typically use data_pgs(objid,doampg) function

11

showplan
A few gotchas
The future of showplan

12

showplan
A few gotchas

Use of an index does not always mean a trouble free query
Some indexes are not especially selective with certain data

Always use common sense
Knowledge of data
Sanity checks using pp and lp based estimates
May well be worth using the 302 etc. trace flags that follow

Easy to miss that an index is being noncluster leaf level
scanned

Rather than the usual, and mostly highly efficient, traversal
Still useful, but very much second best
Remember a difference of a few logical IOs nested well down inside a
join loop can build up massively in terms of total IOs
Thus can burn a lot of CPU and take a lot of time

13

Example

A text based showplan output in XML will also be
available

showplan
The future

14

The “302, 310 and Friends” trace flags
Outline of the trace flags with a few examples
Summary of the trace flags
Future of these trace flags
Where to go for further information

15

“302, 310 and Friends”
Example query

Example underlying sample outputs shown

1> dbcc traceon (3604, 302)
2> go

1> select ta.au_id, t.title_id, t.title, t.pub_id,
t.pubdate, t.price

2> from titles t, titleauthor ta
3> where type = "cooking"
4> and price = 10
5> and t.title_id = ta.title_id
6> go

16

Entering q_score_index() for table 'titles' (objectid 208003772, varno = 0).
The table has 5000 rows and 621 pages.
Scoring the JOIN CLAUSE:

title_id EQ title_id
Base cost: indid: 0 rows: 5000 pages: 621 prefetch: N

I/O size: 2 cacheid: 0 replace: LRU
Relop bits are: 5
Estimate: indid 1, selectivity 0.000198, rows 1 pages 3 index height 2
Unique clustered index found--return rows 1 pages 3
Relop bits are: 805
Estimate: indid 2, selectivity 0.000198, rows 1 pages 4 index height 3
Relop bits are: 805
Estimate: indid 4, selectivity 0.000198, rows 1 pages 4 index height 3
Cheapest index is index 1, costing 3 pages and

generating 1 rows per scan, using no data prefetch (size 2)
on dcacheid 0 with LRU replacement

Join selectivity is 5000.000000.

Red = OAM
Blue = Distribution Page
Black = Optimiser

“302, 310 and Friends”
302 output

Now histograms

WARNING ! rather old style examples ...

17

Entering q_score_index() for table 'titleauthor' (objectid 176003658, varno = 1).
The table has 6250 rows and 126 pages.
Scoring the JOIN CLAUSE:

title_id EQ title_id

Base cost: indid: 0 rows: 6250 pages: 126 prefetch: N
I/O size: 2 cacheid: 0 replace: LRU

Relop bits are: 4
Estimate: indid 1, selectivity 0.000229, rows 1 pages 2 index height 1

Cheapest index is index 1, costing 2 pages and
generating 1 rows per scan, using no data prefetch (size 2)
on dcacheid 0 with LRU replacement

Join selectivity is 4369.000001.

Red = OAM
Blue = Distribution Page
Black = Optimiser

“302, 310 and Friends”
302 output (cont.)

18

Information you get from 310:
Whether the query is Connected
Display the current permutation of tables “NEW PLAN”
For each Join Order (in the order of tables)

varno, indexid
path, pathtype, method
outerrows, rows, joinsel
cpages, prefetch, iosize, replace
lp, pp, total cost
jnvar, refcost, refpages, reftotpages
ordercol[0], ordercol[1],

Total # Permutations

“302, 310 and Friends”
310 – tracing join order decisions

19

QUERY IS CONNECTED

0 - 1 - 2 -
NEW PLAN (total cost = 16548):

varno=0 (stock) indexid=3 (stock_by_name)
path=0x2075c168 pathtype=sclause method=NESTED ITERATION
outerrows=1 rows=500 joinsel=1.000000 cpages=24 prefetch=Y iosize=16
replace=LRU lp=36 pp=24 corder=1

varno=1 (asset) indexid=1 (asset_by_id)
path=0x2075c3d0 pathtype=sclause method=NESTED ITERATION
outerrows=500 rows=75 joinsel=59.000001 cpages=16 prefetch=Y
iosize=16 replace=LRU lp=300 pp=46 corder=2

varno=2 (sec_xn) indexid=2 (sec_xn_date)
path=0x2075c800 pathtype=sclause method=NESTED ITERATION
outerrows=75 rows=35 joinsel=10.000000 cpages=3 prefetch=N iosize=2
replace=LRU lp=4860 pp=272 corder=2

“302, 310 and Friends”
310 – sample output

20

Query Is Connected
Unless there is no join clause, always printed

Display the current permutation of tables
0 - 2 - 1 -
1 - 0 - 2 -
1 - 2 - 0 -

Ignoring this Permutation
Join order discarded as its cost is already higher than plans
already considered
If Optimiser ignores what you believe to be a good plan, use
trace flag 317 to see calculated costs

varno, indexid
indicated which table and what index

path, pathtype, method
indicates whether index based on join, or, sclause
e.g. sclause for outer, join clause for inner

“302, 310 and Friends”
310 – typical features in output

21

outerrows, rows, joinsel
represents how many rows from outertable joining with the
inner table
how many rows of inner table qualify with indexid

joinsel
join selectivity from (302) output, important field

cpages, prefetch, iosize, replace
shows if/why large block IOs will be used

refcost, refpages, reftotpages
reformat costing information

ordercol[0], ...
column order for joins

Total Cost
Equals 2 * lp + 18 * pp (unless changed)

“302, 310 and Friends”
310 – typical features in output (cont.)

22

Are outerrows and rows estimate reasonable?
Are the lp estimates reasonable?
Are the pp estimates in line with cache?
How many permutations are ignored?
For each table, is the index based on search
clause or join clause?
Whether reformatting is being used?
Does the join order avoid an extra sort?

“302, 310 and Friends”
310 – what to look for in the output

23

dbcc traceon(303)
Use when justification of optimization for OR clause is required

dbcc traceon(311)
Additional / alternative info on estimated lp and pp cost factors

dbcc traceon(317)
Same as 310 in terms of information displayed and display
format
Shows all permutations not just the cheapest

dbcc traceon(319)
Shows the costs of the possible reformatting options when they
are considered.
WARNING: This also gives a great deal of Query Tree
information which is of no value at all

“302, 310 and Friends”
The Friends

24

Parser
Normalisation
Query Analyser
Determine Optimal Access Path

Best Index, I/O size etc.
Explore Possible Join Orders

Including Caching Strategy
Generate Final Query Plan

302 /
303(*)

310 /
312 /
317 /
319 (*)

}
}

Possible
Trace Flags

(*) less value

“302, 310 and Friends”
Tracing a Query to a Query Plan

25

Trace flags such as 302, 310, 317 will be replaced
by extended showplan syntax
set option show [brief|normal|long]
set option show_histograms [brief|normal|long]
set option show_engine [brief|normal|long]

“302, 310 and Friends”
ASE 15.0 – future of the flags

26

The original Ian Smart presentation that introduced the “302, 310 and
Friends” title

Pre 11.9.2 but still the most helpful tutorial in many ways
ASE Troubleshooting Guide volume 1

Provides some basic explanations
Less helpful on why & how to use

http://www.sybase.com/detail?id=1011767
“Technical Issues in ASE 11.9.x and 12.0 Upgrade”
Explains the 11.9.2 changes in 302 output

John Kirkwood ~ “Official Sybase Internals”
Some additional remarks e.g. on 311
Good treatment of some of calculations for sizes, IOs etc.
If you can still get it ! ISBN 1-85032-334-8

Rob Verschoor ~ “The Complete Sybase ASE Quick Reference Guide”
(Very) brief writeups of most flags ISBN 90-806117-1-9
www.sypron.nl

“302, 310 and Friends”
Where to look for More Information

27

Query Tuning
Approach hints & tips
Decision flow

28

First catch your query
Maybe already identified and handed to you fine
Otherwise ? identify “hotspot” tables and indexes and related SQL

monitoring tables, DBXray, DB Expert all good for this
Identify, rank and understand big tables

Basic sizing, intuition for how long to scan etc.
Primary & surrogate key structure
Get systematic sizing list using approx_sizes.sql or similar

Always worth getting some insight via locks taken
Applicable to long running queries
Maybe easiest way to find where time being spent

Consider doing grouped selects
Counts of rows grouped by various lists of key values
Can be intuitively easier than constantly looking at the intricate
selectivities and other statistical info from optdiag, trace flags etc.
Use common sense and the basic scan estimates to avoid
attempting such selects if they will take unfeasible elapsed times !

Query Tuning
Approach

29

Get statistics in good shape first
Obvious but vital
Drop and recreate all statistics in a copy of data if possible

Look for potential additional indexes
Intuition from joins and subselects etc.
Look to improve selectivity, reduce logical IOs on inner tables
Test initially by over-specifying indexes (plenty of columns)
Then trim them down to minimum necessary later

Be careful with test cases
Easy to convince yourself there’s a bug or will’o’the’wisp
Oddities like same plan wildly different logical IOs do exist,
but they are rare more likely a red herring in your test case

Don’t forget the power of nonclustered index covering
Discriminatingly chosen additional columns can help
Can make index support more queries
Don’t go mad of course sanity check index volumes constantly

Query Tuning
Decision Flow - 1

30

Start with showplan of course
In many cases you can second guess alternatives
Try index variations if any seem promising
Showplans (better: AQPs) as last resorts

If doubts about showplan consider 302 etc. trace flags
Generally 302, 310, 317 best starting set
Can be run with noexec like showplan can
Don’t so much try to grind through shadowing all the optimizer
choices and permutations
More a question of looking for inspiration and relating back to the
business data, displayed selectivities and any “distribution
queries” you have gathered

Motherhood’n’apple’pie BUT
Disciplined approach
Test queries in isql with results to files, getdate() timings, clear file
naming convention etc. to identify steps taken results obtained

Query Tuning
Decision Flow - 2

Click to edit Master title style

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

Adaptive Server Performance and
Tuning

Barclays Capital
Lunchtime “Brown Bag”

Performance & Tuning for Developers
Refreshers ~ Opinions ~ Updates ~ Tips

Mark Hudson, Sybase UK Proof of Concept Team
Alan O’Neill, Account Manager

© Sybase 2005

Afternoon Tea

