

Simulating the Structural Evolution of Software

Benjamin Stopford1, Steve Counsell 2

1 School of Computer Science and Information Systems,
Birkbeck, University of London

2 School of Information Systems, Computing and Mathematics,
Brunel University, London

Abstract. As functionality is added to an ageing piece of software, its original
design and structure tends to erode. The underlying forces which cause such
degradation have been the subject of much research. However, progress in this
field is slow due to the difficultly faced in generating empirical data [6] as well
as attributing observed effects to the various points in the causal chain [7]. This
paper tackles these problems by providing a framework for simulating the
structural evolution of software. A complete model is built by incrementally
adding modules to the framework, each of which contribute an individual evo-
lutionary effect. These effects are then combined to form a multi-faceted simu-
lation that evolves a fictitious code base approximating real world behavior.
Validation of a simple set of evolutionary parameters is provided, demonstrat-
ing agreement with current empirical observations.

1 Introduction

Software evolution is a complex phenomenon and deriving formulations for the inter-
actions that make up its whole is a significant challenge. In fact, software science
possesses no theoretical framework to describe its evolution. There are nevertheless, a
variety of behavioral observations and heuristics that describe the evolution of soft-
ware. Examples vary from laws of software evolution, such as those proposed by
Lehman [8], to more specific underlying behaviors such as the coupling types of
Briand et al. [1]. Simulating rules individually is within the bounds of a software
model and combining such effects would provide an interesting basis for experimen-
tation.

This paper presents a method for exploring software evolution from the inside out.
Individual laws can be proposed and added to a simulation framework. The effects of
these laws can then be measured in isolation, under different environmental condi-
tions and against other proposed laws.

The majority of research in software engineering simulation is concerned with the
simulation of software process. Prominent examples of this include the modeling of
project planning [4], defect levels and staffing profiles [9] as well as system size and
effort trends [10]. The aims of process simulations are to investigate the processes by
which people, technology and practices are organized to transform information, mate-
rials and energy into a piece of software. Conversely, the focus herein addresses the
effect that evolution has on the structure of software at a source code level and how

Simulated Development Processes Simulated Physical Structures

Feedback

Agent (s)

Evolution
Policy

Code Metric

Requirements

Code Base

this structure varies over the evolution of a project. It is thus the code structure that is
under analysis rather than the process through which it is generated.

2 The Simulation Model

The framework is based around a fictitious code base which defines the basic rules of
software development such as the existence of classes and methods as well as their
means of interaction. Agents (simulated developers) then evolve this code base
through the addition and processing of requirements. The specifics of evolving and
measuring the system are left to customizable plug-ins which can be tailored to fit
individual experimental aims. The framework thus presents a controlled environment
that enforces the evolution of the code base in a realistic manner - the direction that
this evolution takes rests in the hands of the experimenter. The proposed model fol-
lows a simple feedback network. Its four basic elements are requirements, evolution,
code metrics and the code base. The latter three are connected in a feedback circuit as
shown in Figure 1:

Figure 1. An overview of the basic elements of the simulation framework and the data flows
between them. The feedback loop from the Code Base back to the Agent via the Code Metric is
also shown.

1. Requirements: Requirements are generated through a stochastic, configurable
process and can be reused across experiments or created afresh. Requirements con-
trol the conceptual content of the simulation to later be turned into code constructs.

2. Evolution: The Agent and Evolution Policy evolve the code base using the re-
quirements specified. Evolution is concerned with turning the hierarchy of re-
quirements of different types into a structure of code constructs.

3. Measurement: Code metrics provide a means for the Agent to evaluate the code
base prior to changing it. This supplies the closing section of the feedback loop in
which agents can respond differently depending on their observation of the code
base.

4. Code Base: The evolution of the relationships between physical code constructs is
modeled inside the Code Base. The simulation considers only entities greater than,
or at method level.

A run of the simulation starts with the generation of a set of requirements. These

are then passed to an Agent to implement. The Agent implements the requirements
through the use of an evolution policy specified for the particular experiment. The
evolution policy defines a set of rules dictating how to structure code as it is added.
The evolution policy can also take into account information on the current state of the
code base fed back to it from the code metrics.

The evolution of the code base is measured using a cost function. The cost func-
tion is an arbitrary measure that can be used to compare the relative costs of different
runs of the simulation. The costing model is split into implementation cost and metric
cost. The former is the cost associated with creating and altering code. The latter is
the cost output by the metric.

The code metrics allow experimenters to model the cost of comprehending differ-
ent structures as well as a means for agents to observe the code base. The act of ob-
serving the code base through metrics causes information to be fed back from the
code base into the evolution policy so that the code base structure can influence how
it is evolved. This is important since it allows the state of the code base to alter the
evolutionary decisions made by agents. Such feedback loops, formed from simple
concepts, are responsible for many of the processes observed in complex systems [3].
As such, the simulation can create responses that are likely to differ significantly from
those formed by static analysis.

2.1 Requirements

Requirements control the conceptual content of the simulation to later be turned into
code constructs; the separation of requirements from evolution is important. Running
with different requirements allows the simulation to model different development
environments (for example green field developments vs. mature products). Experi-
ments can then either hold the requirements constant or deliberately vary them to
explore how they effect the simulation. Requirements are generated though a stochas-
tic process and can be serialized and reused across different experimental runs.

2.2 The Code Base

The code base acts as a repository for different code constructs created and linked
together by Agents. These constructs can then refer to one another via the various
calls made open to them by the simulation framework such as “Reference” or “Create
Function”. The code base encapsulates all creational calls and references so that re-
sponsibility for enforcing integrity within the resulting code is retained.

The code constructs used by the simulation are based on the work suggested by
Kelsen [5]. They include Classes, Functions, Events, Properties and References.
Classes and Functions represent standard classes and functions that might be encoun-

tered in a real code base. Events denote an interaction with an event outside of the
system. Properties represent the internal storage of state through variables of a speci-
fied type. References link code constructs in a directional manor. References also
specify a Coupling Type, determined by the evolution policy. Coupling types define
the effect that a reference has on the code construct it operates upon, for example
describing whether data is retrieved or changed through the coupling.

The execution path of the simulation starts at one of the system events. The code
base in the simulation is constructed in such a way that this execution path is always
enforced.

2.3 The Agent

The Agent is a system concept that embodies the role of a developer in a real software
project. Agents are stateful with the ability to ‘learn’ about the system as they modify
and add to it; the agent’s primary concern is to facilitate the conversion of require-
ments into code using an “Evolution Policy”. The Evolution Policy is the plug-in
responsible for turning requirements into code. The agent is responsible for facilitat-
ing this (for example, by locating the class to change).

Each agent has a memory of the code constructs that they were responsible for im-
plementing. This memory dissipates as time elapses in the simulation. An agent’s
memory can be accessed from the evolution policy or complexity metric to improve
the depth of the simulation, particularly when considering multiple agents acting on
the code base. When multiple agents are configured, each new requirement is imple-
mented by an agent selected randomly from the pool.

2.4 The Evolution Policy

The Evolution Policy is the plug-in that bears responsibility for evolving the code
base and is thus a focal point for defining experiments. The experimenter must im-
plement three functions in the Evolution Policy in response to the major categories of
requirement type: New, Change and Augment. In addition, the evolution policy also
provides a set of utilities that allow the experimenter to customize their implementa-
tion. These include:
� Code Metric: The evolution policy uses a code metric to retrieve feedback from the

code base before making a change. The code metric also records a cost used as a
measure of the experiment (see section 2.5).

� Memory: The memory of the agent is accessible from the evolution policy. This
provides feedback on the agent’s recall of the various code constructs that they
created.

� Coupling Type: A specific coupling type is associated with References as they are
created detailing the nature of interactions made through references.

2.5 Measurement

The simulation is measured via a cost function that provides a measure for comparing
different runs. The total cost is split into two different sections that indicate the sepa-
ration between the cost of creating and the cost of understanding code.
� Metric Cost is calculated by the code metric plug-in. This provides the means for

customizing experiments by allowing an experimenter to specify how the evolu-
tionary factors modeled in the experiment should be measured.

� Implementation Cost is that incurred through the physical creation of code. This is
calculated automatically and is proportional to the number and type of code con-
structs created.

2.6 Complexity Injection

Complexity Injection is a feature of the framework that allows a random distribution
of extra features (references, properties etc) to be added to a code construct when it is
created. This allows the complexity of the simulation to be controlled without altering
the logic in the evolution policy.

The Complexity Injector and the Evolution Policy have similar, but fundamentally
different, roles. The Complexity Injector is responsible for the monotonous detail
added to all code constructs when they are created (classes need functions and refer-
ences, etc). The Evolution Policy is responsible for shaping how the structure be-
tween classes and functions evolve.

2.7 Default Plug-In Implementations

A default set of plug-ins are supplied and shipped with the simulation. They define a
basic set of policies through which the code base can be evolved and are used in the
validation experiments presented in this paper. It is anticipated that future experi-
ments will improve on the basic assumptions they make, incorporating more realistic
evolution policies and metrics. To this end, they are created in an extensible manner.

3 Using the Framework to conduct Experiments

The Framework includes a GUI designed to ease the comprehension of the code base
structure during a simulation run. The GUI has three views: one for the requirements
and two for the code base. The code base views include a graphical representation of
the class hierarchy and can be drilled into by the user. A second view represents the
set of execution paths. More structured analysis can be performed using data pro-
vided through an output data file.

The method for conducting an experiment is:

1. Identify the problem to be investigated and develop a dynamic hypothesis that
describes its cause.

2. Create an evolution policy plug-in that changes the code base according to the
dynamic hypothesis.

3. Amend the code metrics plug-in to ensure that it is sensitive to the evolutionary
changes expected.

4. Test the evolution policy and metric in isolation to ensure that provide the ex-
pected behavior.

5. Add the implemented policy to the full simulation model so that it can be investi-
gated in conjunction with other existing simulated factors.

4 Validation of the Simulation Framework

The simulation framework is validated through a suite of tests that analyze perform-
ance over different experimental conditions. The aim of each test is to validate a basic
behavior of the system against an intuitive understanding or empirical observation.

4.1 Validation (1): Linear Evolution of Code Base Size

Empirical observations of the increase in size of an evolving code base, as measured
by Capiluppi et al [2], show a linear increase in size over time. The simulation frame-
work was used to reproduce this behavior using the default plug-ins. Both the original
and simulated results show a linear increase corroborating this basic behavior.

Capiluppi et al. also provide a study of the distribution of average lines of code per
file over various releases stating that the average number of lines per file should in-
crease slightly as the system evolves. A comparable result was generated with the
simulation framework.

4.2 Validation (2): The Effect of Requirement Type

An important function of the simulation is its ability to respond to different types of
requirement in a distinct manner. This aspect is validated by measuring how Re-
quirement Types affect evolution of the code base and ensuring that this agrees with
expected behavior. The proposition is that developments simulated from requirements
that include a high degree of re-visitation will cost more to develop. This assumption
is made from the real world observation that existing code is harder to change (as it
must be understood). The results in Figure 2(a) corroborate this hypothesis with the
cost being significantly higher for simulations that have to revisit code.

(a)

0 5 10 15 20 25 30

Run 3
Run 2
Run 1

Epoch

(b)

0 1 2 3 4 5 6

Cost

2 Agents
4 Agents
8 Agents
16 Agents
32 Agents

Cost

Epoch

4.3 Validation (3): Response to Different Numbers of Agents

The simulation provides a facility for specifying the number of agents that contribute
to evolution. Each agent “remembers” the code they created and this memory is taken
into account by the default code metric. The effect of this is to drop the associated
metric cost incurred by an Agent that is changing code they were responsible for
creating (and that they therefore remember). This effect was validated via the experi-
ment results displayed in Figure 2(b). These show that development with two agents
is most efficient and the one with thirty agents is least efficient. Where there are
fewer developers, the cost is lower as each developer is responsible for the original
construction of a higher proportion of the code base (and thus has less to learn). This
validates the simulation through observation of an expected behavior.

Figure 2: (a) Metric Cost for Simulations with varying requirement types. Run (3) is
the control, Run (2) represents requirements that incorporate a large proportion of
changes and Run (1) is predominantly new requirements. (b) Evolution with different
numbers of agents. The different profiles result from the effect of agent memory.

The results presented in this section provide a level of confidence that the simula-
tion performs in a manner approximating real world behavior. This conclusion is
corroborated by both intuitive expectations and empirical results.

5 Conclusions

The evolution of software, in particular its structural erosion over successive genera-
tions is a primary concern of software engineering today. This paper presents a novel
approach for investigating this problem. From an empirical standpoint, the simulation
can be calibrated with a relatively small amount of empirical data. Once calibrated,

the scope can be broadened to include different environments with little or no effort.
This reduces the need for long and expensive empirical investigations.

From a theoretical standpoint, the simulation can be used to build a causal model
of software evolution from individual behaviors. These behaviors can be investigated
in isolation as well as part of a collective model. Such a bottom-up approach cannot
easily be replicated by any other method.

Much as in other disciplines, simulation may provide a valuable window into a
world otherwise inaccessible to current research, expediting the crystallization of
laws as well as opening the doors to new insights. Full source code for the simulation
framework can be found at:

http://www.benstopford.com/devsim/devsim.shtml

6 References

[1] “A Unified Framework for Coupling Measurement in Object-Oriented Systems”: L.C.
Briand, J.W. Daly, J.K. Wust: IEEE Transactions on Software Engineering, Vol 25, No 1,
Jan/Feb 1999

[2] “Studying the Evolution of Open Source Systems at Different Levels of Granularity”:
Capiluppi, Morisio and Ramil: Proceedings of the 12th International Workshop on Program
Comprehension

[3] “Urban Dynamics” Forrester, J. W. Cambridge MA: Productivity Press. 1969.
[4] “Software Process Modeling Support for Management Planning and Control”. Kellner, M.

Proceedings of the first international conference on the software process 1991.
[5] “A Simple Static Model for Understanding the Dynamic Behavior of Programs.” Kelsen:

International Workshop on Program Comprehension 2004
[6] “Need for more Longitudinal Studies of Software Maintenance”: C.F. Kemerer, S. Slaugh-

ter, Proc. Int’l Workshop Empirical Studies Software Maintenance, Monterey Calif., 1996
[7] “An Empirical Approach to Studying Software Evolution”: C.F. Kemerer, S. Slaughter,

IEEE Transactions on Software Engineering, Vol. 25, No. 4 July/August 1999
[8] "Program, Life Cycle and the Law of Program Evolution", M. Lehman, Proceedings of the

IEEE, 68, 1060-1078, 1980
[9] “Modeling Software Processes Quantitatively and Assessing the Impact of Potential Proc-
ess Changes on Process Performance” Raffo, D. – PhD Dissertation. Carnegie Mellon Univer-
sity 1996
[10] “Software Process White Box Modeling for FEAST/1”, Wernick and Lehman: Journal of
Software Systems 1999

