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Abstract 
This dissertation presents a simulation framework through which experiments into the evolution of 
software systems can be studied. Specifically, the evolution of a code base itself. The simulation 
framework is constructed in java and can be customised to specific experimental goals through a 
set of configurable plug-ins. When configured, the experiment is run to investigate the effects of 
different evolutionary behaviours in the resulting code base. The framework for the simulation is 
presented along with description of the pluggable extensions (plug-ins) and discussion of what it 
can and cannot perform.  
 
A simple, default implementation of the plug-ins is provided which simulate the basic behaviour. 
The system, with the default plug-ins is then validated to ensure that they work correctly and that 
the system evolves the code base in a manor that is plausible based on current empirical 
observations. 
 
Finally experiments are performed to validate this default behaviour. A specific experiment is also 
run to probe the effects that agent memory have on development in a multiple agent system. The 
results confirm expectations within acceptable error margins.   
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Glossary of Terms 
Term Definition 
Agent The concept of a developer in the system 
Augment (Change 
Operator) 

A Change Operator that represents an augmentation of existing 
behaviour so that it performs a conditionally disparate function. 

Augmentation 
Ratio 

This defines the proportion of code constructs in an augmentation 
that will be changed. For example if the augmentation ratio is 50% 
then half the code constructs that correspond to the Task will be 
augmented with the new Requirement. 

Change (Change 
Operator) 

A Change Operator that represents a change to the behaviour of 
existing code (e.g. bug fix or clarification). 

Class Represents a repository of functions and parameters. 
Complexity 
Injection 

Complexity Injection involves adding a random number of extra 
features to a code construct when it is created. 

Conceptual Types Tasks are related to one another through Conceptual types. This is 
similar to an IS-A relationship where the Conceptual Type is used 
to link two tasks that are similar. 

Data Entity An entity that has no functional content. It only holds state. 
Entity Represents a type of Task in a Requirement. An Entity infers that 

the Requirement Task represents a conceptual entity of the system 
that combines both state and behaviour. An example might be a 
‘Shopping Cart’ in a online shopping application. 

Epoch One run of the simulation defining a single development cycle 
through the implementation of a set of requirements. . 

Event An action outside the system that causes a process to be initiated. 
Events exist as requirements and code entities. 

Evolution Policy 
 

The Evolution Policy is the plug-in that determines how the code 
base evolves (along with the Complexity Injector). 

Function Functions are analogous to Operations in the Requirements 
section. They represent the elemental unit through which the code 
base is built and linked. 

New (Change 
Operator) 

A Change Operator that represents new functionality that is 
constructed either from an existing requirement that is to be 
extended or a new system event. 

Operation Represents a type of Task in a Requirement. An Operation infers 
that the Requirement Task represents an operation that must be 
performed such as the “Check Out” function in a online shopping 
application. 

Property Properties represent local variables of a specified type. 
Reference A reference describes one Function or Property calling another. It 

also has a Coupling Type, determined by the evolution policy. 
Coupling types determine whether data is retrieved or changed in 
the reference. 

Task A subtask of a Requirement. Each task has a type which is used to 
indicate the fact that tasks within a requirement can differ. The 
types used currently in the simulation are Entity, Operation and 
Data Entity. 
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Task Type This describes what the content of a task is. It can be one of Entity 
Operation or Data Entity. 

Roadmap 
Sections 1–4: Introduce the concept of simulation and its application in the context of software 
evolution.  
Sections 5-9: Discuss the different aspects of the simulation implemented as part of this 
dissertation. 
Sections 10-11: Discuss the results of the experiments performed with the simulation.  
Sections 12-14: Discuss further experiments and associated work. 
Sections 15-16: Closing remarks. 
 

1 Background 

1.1 Introduction: Simulation as a Tool for Experimentation 
 
As a first year undergraduate studying mechanics the rules that underlie the basic operations of 
the universe began to crystallise with an attractive simplicity. Newton’s laws of motion epitomise 
this by modelling the motion of all moderately sized bodies through a handful of remarkably 
simple laws. However the simplicity of such laws form a smokescreen that covers the layer cake 
of interactions that really exist in most real world systems. Seemingly simple structures move 
rapidly towards chaotic behaviour when combined. The predictable motion of a pendulum is a 
good example. On its own it moves in a predictable motion described by Newton’s laws. However 
combine two pendulums together and rapidly the motion becomes random. Static analysis of 
such systems becomes impossible as the non-linearity that characterises their interaction quickly 
dominates.  
 
The apparently random behaviour that results from the interplay of such forces is still predictable, 
at least statistically. Thus constructing a computer simulation of the duel pendulum model is a 
relatively simple task. It is simple because each law that drives the system is simple. Only the 
resulting behaviour, the interaction between the laws, is complex.  
 
The study of software is fundamentally different to physics as with software there is no thorough 
understanding of the underlying behaviour, at least not as a cohesive and substantiated theory. 
However the software engineering field have produced many behavioural observations and rules 
that describe software evolution. Simulating these rules individually as well as combining their 
effects is well within the bounds of a software model. Simulation requires the definition of static 
rules that describe the system i.e. what exists and how those features behave individually. 
Interactions between these rules and features are then added. In the pendulum example this 
would be the modelling of rules such as force, mass and separately their interaction via Newton’s 
laws.  
 
In software simulation individual models are used in an analogous manor. First the laws which 
are known and understood are modelled in the simulation. Their interaction produces a complex 
system from the individually validated features. The research interest is then gained either from 
the repeated application of one law upon itself or the effect single laws have on the system as a 
whole.   
 
Simulation is used extensively in the physical and social sciences, engineering, economics and 
finance to construct models of complex systems. Obscure and complicated problems that have 
been explored including commodity supply and demand [Med70], models of urban growth and 
decay [For69], Micro and Macro Economic models [For89] and amongst others, model of 
environmental damage [Ster00]. Such simulations, which are used to model real world systems, 
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are designed to display significant characteristics without replicating all the complexity that exists 
in the physical implementation. Thus simulation is most applicable when considering systems that 
display a level of complexity beyond that which static models or other similar techniques can 
usefully represent. Kellner et al [Kelln99] note that simulation can be used for modelling systems 
that display the three following behaviours: 
 

1. System uncertainty and stochasticity. 
2. Dynamic behaviour. 
3. Feedback Mechanisms. 

 
Systems which exhibit such behaviours, but whose underlying forces are at least partially 
understood make good candidates for simulation. The aim of the experimenter is to take those 
concepts that are understood and apply them collectively to investigate, quantify and promote 
their understanding. 

1.2 The Application of Simulation in Software Engineering 
Software is subject to a variety of factors that result in its degradation over time. This was noted 
in the early 1980’s by Lehman in his law of Increasing Complexity [Leh80]: 
 
“As an evolving program is continually changed its complexity, reflecting a deteriorating structure, 
increases unless work is done to maintain or reduce it.” 
 
This deteriorating structure is also associated with the concept of increasing entropy [Bian00]. As 
a response to such issues experts in the Software Engineering community have come up with a 
plethora of ‘best practices’ that denote how software should be constructed to best defeat such 
undesirable outcomes. 
 
However such counsel is usually offered in isolation taking the form of simple generalisations that 
rarely account for the subtle interactions between forces that shape a piece of software as it 
evolves. 
 
The evolution of structure in software systems displays all three of the complexities enumerated 
by Kellner. They result from the action of a variety of forces that mould evolution. Simulation 
provides a unique opportunity to model and analyse these forces as they act upon one another in 
differing situations. The simulation model can also be extended to evaluate the collective effects 
of the various mechanisms that have been suggested for managing the ever deteriorating 
structure. This provides validation of their intrinsic and collective benefit as well as offering the 
possibility of an enhanced insight into the relationships that govern this complex field. 

1.3 Previous Work on Simulation 
The majority of research using simulation in software engineering is concerned with the 
simulation of software process. Prominent examples of this include the modelling of project 
planning [Kelln91], defect levels and staffing profiles [Raffo96] as well as system size and effort 
trends [Wern99]. These differ from the simulation model presented here in that they investigate 
the processes by which people, technology and practices are organized to transform information, 
materials and energy into a piece of software. 
 
Conversely, the proposal discussed in this paper looks only at the effect that evolution has on the 
structure of software at a source code level. There may appear to be overlaps here with process 
simulations, however the key difference lies in the structures that are under study. The aims of 
process simulations are to investigate and optimise the process through which code is 
constructed as part of multifaceted methodologies stretching over the project lifecycle. Instead the 
development simulation presented here focuses on how code is structured as a physical entity 
and how this structure varies over the evolution of a project. It is about the code structure rather 
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than the process through which it is generated. The processes that are modelled are incorporated 
so as to include their effect on the code structure. 

2 An Introduction to the Simulation Model 
This simulation models the growth of a fictitious system based on parameters and policies set up 
for each experiment. The research gain is achieved by changing the rules by which the simulation 
evolves and measuring how this affects the resulting code base. 
 
This is best elaborated with a simple example: Let us assume that a principal is proposed that 
states that, as a system evolves, there is benefit in imposing a hard limit on the number of 
methods that a class can have. Thus when a class reaches a certain size it is refactored [Fow99] 
to move sections into delegate classes. An experiment is to be conducted that will investigate 
whether this proposition remains true as a system evolves. 
 
Initially this could be investigated with a static analysis. Such an analysis might conclude that 
benefit would be gained as smaller classes are, on the whole, easier to understand than larger 
ones due to design principles such as information hiding [Par72]. 
 
Verifying this assumption in a traditional fashion would likely involve a long and potentially 
expensive empirical study. However useful insights can be gained by applying the proposition to 
an existing simulation and observing how it changes the evolution of the code base. 
 
To do this a simulation experiment would be configured such that when a class evolves to a 
certain size it is refactored to include a delegate. The simulation would then be run, combining 
this new policy with a set of default policies that define how systems are believed to operate in 
general. The resulting combination will measure the interaction of this newly proposed evolution 
policy with those that are already modelled. 
 
Such an experiment would not necessarily answer the question explicitly but would certainly 
provide potentially useful data from which other observations about the conjecture can be made. 
For example different distributions of results are likely to arise as the maximum class size 
threshold is varied. Forcing class evolution to divide at smaller thresholds is likely to result in 
many distributed classes which would reduce comprehensibility as structures become 
fragmented. If true, this would add a second, lower tail to produce a two tailed distribution of 
comprehensibility against maximum class size whose profile would be of interest. 
 
As well as performing validation in the presence of other evolutionary factors, the simulation 
facilitates the investigation of repeated experiments within different environments. Such 
environments might include small vs. large projects or green field projects vs. ones that contain 
much rework etc. 

3 Aims 
The primary aim of this project is to develop a workable simulation model to facilitate experiments 
that investigate the macroscopic1 evolution of software as the policy by which it evolves is 
changed. This is realized through the development of a simulation framework. The framework 
defines the basic rules of the system and facilitates the generation of an evolving code base. 
These basic rules are configurable through system settings. The role of evolving and measuring 
the system is left to customizable plug-ins which can be tailored to fit individual experimental 
aims. 
 

                                                      
1 The divide between macroscopic and microscopic is taken at the level of functions i.e. code that 
exists inside functions is considered microscopic. 
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A default set of these plug-ins is provided and experiments are run to validate them against 
expected results. Care is taken to make sure that the simulation provides modelling of a sufficient 
number of attributes of the system to ensure that interesting experiments can be run. Conversely 
the simulation does not model so many attributes as to make it unwieldy and overly complex to 
operate. 

4 Experimental Design: How to Simulate the Development Process 
Kellner enumerated three complexities each of which is incorporated in the framework design 
(see section 2). The incorporation of each of these properties is discussed in the following 
sections: 

4.1 System Uncertainty and Stochasticity 
The process of software development is non-deterministic as ultimately it is a product of human 
endeavour. As a result any attempt to model it requires a stochastic basis. This stochasticity is 
injected into the simulation in two ways. Firstly the requirements generation process that feeds 
the simulation has stochastic behaviour. Secondly complexity is randomly injected into the code 
base as a final stage of the evolution process. Extra stochasticity can also be added by 
experimenters when implementing the various plug-ins. 

4.2 Dynamic Behaviour 
Dynamic behaviour in software evolution results from the complex interaction of the many factors 
that affect the transformation of requirements into code. The simulation provides a pluggable 
evolution policy in which the evolution of the code base can be controlled on an experiment by 
experiment basis. This ‘evolution policy’ can be altered to take into account a variety of factors 
when evolving the code. These will be discussed further in a later section. 

4.3 Feedback Mechanisms 
Feedback in the simulation is provided between the code base and the evolution policy (i.e. the 
plug-in responsible for evolving the code). This allows the simulation to be configured to change 
the way it evolves code based on feedback about the structure of the code being changed. For 
example the probability of refactoring a piece of code is likely to be reduced if that code is highly 
coupled. Thus a measure of the coupling of the function in the code base could be used as 
feedback into the evolution policy to moderate refactoring decisions. 

5 Elements of the Simulation 

5.1 An Overview of the Simulation Model 
Simulations of any type must take an abstracted view on the environment of interest. Inside this 
view a selection of variables must exist whose individual action is predictable, but whose 
combined effect is not. 
 
The simulation of the software construction process presented here takes a view that is limited to 
entities greater than or at method level. Manipulation of the model is performed at this level with 
the facility for finer granularity to be added stochastically. 
 
The basic configurable elements of the framework are: 
 

 Requirements: The Requirements Generator provides a utility that generates 
requirements through a stochastic but configurable process. 

 Evolution: The Agent and Evolution Policy evolve the code base based on requirements 
they are given to implement. 
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 Measurement: Code Metrics provide a means for the Agent to evaluate the code base 
prior to changing it. 

 
The fourth element of the simulation is the Code Base but this is considered a static entity in the 
framework rather than a configurable element (although potential for alteration is provided). 
 
A run of the simulation starts with the generation of a set of requirements. These are then passed 
to an Agent to implement. The Agent implements the requirements through the use of an 
evolution policy specified for the particular experiment. The evolution policy defines an evolution 
profile based on a set of predefined circumstances that the simulation framework supports. The 
evolution policy also takes into account feedback information from the Code Metrics applied as 
the code is changed. Feedback loops, formed from simple concepts, are responsible for many of 
the complex processes observed in dynamic systems [For69]. This is demonstrated in the figure 
1. 
 

 
 
Figure 1: An overview of the basic elements of the simulation framework including the flow of data 
from Requirements to the Code Base via the Agent. It also demonstrates the feedback loop that 
exists from the Code Base back to the Agent via the Code Metric. The complexity metric and the 
Evolution Policy are pluggable units with the other roles being handled by the framework 
(configurable through the environment variables).  
  
The simulation measures the code evolution process using a cost function. The cost function is 
an arbitrary measure that can be used to compare the relative costs of different runs of the 
simulation by default. The costing model is split into implementation cost and comprehension cost 
(but this can easily be extended). The former being the cost associated with creating and altering 
code. The latter being the cost associated with comprehending the code base as it is changed. 
Thus the feedback from the code base to the costing model is installed. 
 
The following sections provide an overview of the various elements that contribute to the 
simulation as denoted in figure 2. 

Simulated Development Processes Simulated Physical Structures 

Feedback
Pluggable 
Components 

Agent (s) 

Evolution 
Policy 

Code 
 Metric 

Requirements 
 

Code Base 
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Figure 2: System Overview. Diagram of the main system concepts including how they connect 
together. Each of the major elements are discussed in the appropriate sections which follow. 

5.2 Plug-Ins 
The simulation framework is designed to facilitate experiments in software evolution. As such the 
majority of the framework is presented to the experimenter as a utility. This utility has specific 
sections, known as plug-ins, which are available for custom configuration. Plug-ins allow the 
experimenter to specify the logic through which the code base is evolved, within the context of a 
specific experiment, without having to worry about the larger concerns of the simulation itself. 
Physically the plug-ins are simple classes, written in Java™, which implement the appropriate 
interface. The experimenter supplies the Java™ implementation that most aptly fits their 
experimental goals.    

5.3 Requirements 
The simulation process commences with the generation of requirements. Requirements are 
structured collection of tasks that will be later turned into code by an Agent. The structure of 
requirements is deliberately kept simple by only including those concepts that are fundamental to 
the later alteration of code.  This results in a requirements model that does not include all the 
complexities of a rigorous model.  
 
The simple model views requirements as a set of tasks each having a specific type. 
Requirements themselves have a change operator that describes how the requirement will 
operate on the code base when it is implemented. Finally requirements have a starting point. 
Thus a Requirement contains: 
 

Code Constructs  
(Section 5.5.1) 

1 to ∞ 

Agent 
(Section 5.6) 

Requirements 
(Section 0) 

Entity Conceptual Type 

Operations 

Change Operator 
New 

Change 

Augmentations
Task 

Code Base 
(Section 5.5) 

Requirements 
Generator 

Requirements Visualisation 
Code Base Visualisation 

(Section 7) 

Function 

Class 

Property 

Event 

Task Type 

Operates on: 
 

Task or Requirement 
selected at random 

Complexity Injector 
(Section 5.9) 

Code Metric 
(Section 5.8) 

Evolution Policy 
(Section 5.7) 

Requirement Policy 
(Section 5.4.1) 

 Process Class 
 Process 
Function 

 Process 
Property 

 Process Event 

 Calculate 
Complexity 

… 
… 

 Process New 
Class 

 Process 
Augmentation 

 Process Change 

 Task Type 
 Conceptual 
Type Reuse % 

 Change Type 
 Task Revisit 
Type 

 Number of Sub-
Tasks 

 Task Size 
Augmentation %

Configurable 
Plug-ins 
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 A Set of Tasks: Each sub-task has a Task-Type of either Entity, Operation or Data 
Entity. 

 A Change Operator: The Change Operator describes how the requirement will operate 
on the code base. For example it could indicate that the requirement is for new 
functionality or a bug fix. 

 A Starting Point: A Task or Requirement that represents a starting point for the piece of 
work. In the case of completely new functionality this takes the form of a system event. 

5.3.1 Task Types – Entities and Operations 
Each task has a type which indicates that tasks within a requirement can differ. The types used 
currently in the simulation are Entity, Operation and Data Entity. Entities correspond to 
physical or conceptual units of the application (such as a Shopping Cart) which are usually 
stateful but also contain functionality. Operations correspond to processes that the application 
performs (such as the Checkout action). Data Entities are entities that represent only data in the 
application. Tasks are related to one another through Conceptual types. This is similar to an IS-
A relationship where the Conceptual Type is used to link two tasks that are similar. 

5.3.2 Change Operators 
Entities and Operations define the content of Tasks in a Requirement i.e. they say something 
about what that task will entail. Change Operators however determine how the task will actually 
operate on the code base. For example it could be a new piece of functionality or alternatively a 
bug fix. The change operators modelled in the simulation are New, Augment and Change. 
 
Change Operator Operates On Description 
New Previous 

requirement or 
new system event 

New functionality that is constructed either from an 
existing requirement that is to be extended or a new 
system event. 

Change Previous 
requirement 

A change to the behaviour of existing code (e.g. bug 
fix or clarification). 

Augmentation Previous 
requirement 

An augmentation of existing behaviour so that it 
performs a conditionally disparate function. The 
degree of difference is recorded as part of the 
requirement. 

Augmentation and Change 
Augmentation is important as it represents one of the primary processes by which software 
degrades i.e. classes are changed to perform a conditionally different function from that of their 
original design. Augmentation operates on a base requirement, to change that requirement so 
that it performs some conditionally disparate function. This is different to just changing or 
extending code as augmentation implies that it will perform its original task whilst behaving 
differently under certain conditions. This results in the content of the new requirement being 
intertwined with the original content which in turn acts to degrade the conceptual cohesion of the 
code block. 
 
Augmentation and Change are fundamental to understanding evolution as they represent some 
of the most basic forces that must be harnessed if software evolution is to be controlled. An 
example software implementation that handles augmentation is put forward by Gamma et al 
[Gam97] in their implementation of the Strategy pattern (amongst others). Gamma et al use basic 
OO principals to encapsulate the section of a code module that is changing into an underlying 
strategy using polymorphism. Such a measure simplifies the primary module as the augmented 
behaviour is extracted to the strategy class rather than being a complex set of conditionals inside 
the primary module itself.  
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5.4 The Requirements Generator 
The Requirements Generator is responsible for creating a requirement for implementation in the 
code base. In doing this it performs the following steps. 
 

 Determines the Change Type. The first Requirement is always a New. 
 Creates a requirement. 
 Assigns new Tasks to the Requirement, Each task being assigned a Task Type. 
 Sets the Change Type of the task. 
 Selects an existing task or system event for the task to operate on. 

 
Each of these steps is driven by a stochastic process. However the distribution of the selections 
that are made can be controlled via the Requirement Policy. 

5.4.1 The Requirement Policy 
The Requirement Policy allows control over a number of the facets of the requirement generator. 
These are enumerated in the table below. 
 
Setting Description 
Task Type Determine the distribution of Task Types that are created. 
Conceptual Type 
Reuse Percentage 

% of overlap between Task Types assigned to tasks. 

Task Revisit Type Tasks are revisited by new requirements (unless they are of type ‘New’). 
This setting allows control over the distribution of change by task type 
(i.e. Entity, Operation etc). So for example it could be configured so that 
Operations are changed more often that Data Entities. 

Mean Number of 
Tasks per 
Requirement 

Determine the mean number of tasks in a requirement. The more tasks 
the larger the impact on the code. 

Mean Task Size Provide and average size indicator for each task. The larger the value 
the greater effect it will have on the resulting code base. 

Calculate Change 
Type 

Determines the Change Type that will be applied to each new Task in a 
Requirement. 

Augmentation % Determines the degree of change that will occur during an 
Augmentation. This is interpreted as the number of existing tasks in the 
requirement that will be augmented. For example an augmentation 
percentage of 20% would result in changes in one in five of the functions 
in the class that is being augmented. 

 
The default implementation provided in this dissertation is discussed in section 8.1. 

5.4.2 Requirement Chaining 
As tasks and requirements operate on one another (or on new system events) they create 
hierarchies in their structure as one requirement extends, changes or augments others. Notably 
requirements can extend other requirements or tasks. This structure is summarized in figure 3. 
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Figure 3: The hierarchical relationship between tasks and requirements. Only requirements have 
operators but these can operate on either a task or another requirement. 

5.5 The Code Base 
The code base exists as a singleton in the simulation and acts as a repository for different code 
constructs that are created and linked together by Agents (simulated developers). The code base 
allows the modelling of a set of code constructs. These constructs can then refer to one another 
via the various calls made open to them by the code base such as “Reference” or “Create 
Function”. The code base encapsulates calls that create code constructs and references so that it 
retains responsibility for enforcing integrity within the structure that is created. The rules enforced 
are comparable to those found in a real life code base and are discussed in the following 
sections. 

5.5.1 Code Constructs 
The code constructs are based on the work suggested by Kelsen [Kels04]. 

 Class: Represents a repository of functions and parameters. 
 Function2: Functions are analogous to Operations in the Requirements section. They 

represent the elemental unit through which the code base is built and linked. 
 Event: Events also exist inside classes and denote an interaction with an event outside of 

the system. 
 Property: Properties represent local variables of a specified type. 
 Reference: A reference describes one Function or Property calling another. It also has a 

Coupling Type, determined by the evolution policy. Coupling types determine whether 
data is retrieved or changed in the reference. 

 
Properties represent the data manipulated by functions and are stored at class or global scope. 
Properties allow the simulated code base to model state as references from functions to 
properties. These references can have different Coupling Types which signify whether data is 
                                                      
2 Kelsen [Kel04] actually uses the term Operation rather than Function. Function is used in this 
context due to the earlier naming clash. 

Requirement 1: 
 Change Type: New 
 Operates On: New Event 

Task1: 
Type = Entity 

Task2: 
Type = Operation 

Task3: 
Type = Entity 

Requirement 3: 
 Change Type: Augment 
 Operates On: Task2 

Task6: 
Type =Data Entity 

Task7: 
Type = Entity 

Task8: 
Type = Operation 

Requirement 2: 
 Change Type: Augment 
 Operates On: Requirement 1 

Task4: 
Type =Data Entity 

Task5: 
Type = Entity 
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being used or changed, providing a facility for the analysis of state changes. The intention is for 
knowledge of such stateful changes to be utilised in the code metrics and evolution policy. As an 
example the code complexity might be considered to increase if a function uses a property that is 
changed by a number of other functions in that class. 

5.5.2 The Execution Path 
The execution path of the simulation starts at one of the system events (there is a specific GUI 
view for analysing the simulation from this point of view, described in section 7.4). It then flows 
through all references to that initial system event (which is a type of function) recursively until they 
complete. 
 
The code base in the simulation is constructed in such a way that this execution path is always 
enforced (creation of a new code construct requires the specification of the calling one). The 
various plug-ins always have access to the calling function so that it is easy to extend them within 
different experiments. 
 
Properties do not participate in execution. Instead they are bypassed with a reference directly to 
the function in the property that they utilise. This is explained further in section 5.5.4. 

5.5.3 Functions 
Functions are the basic unit for the simulation. Functions extend their influence by coupling 
themselves to other functions either in the same class or a different one. In this manner the code 
executed by the function is increased. They can also reference Properties. 
 
The model focuses only on structures at or greater than a function level. Provision for extending 
this further has been made in the Complexity injector (section 5.9). 

5.5.4 Properties 
Properties are the least intuitive construct as they do not participate in the execution path of the 
simulation. They are introduced to model the stateful linkages between methods in classes (or 
globally), representing the real world encapsulation of state observed in fields. Possible uses of 
Properties could include the evolution of Cohesion. 
 
During the creation of a Property the following events occur: 

 The property is created either in a class or globally. 
 It is assigned a type. This corresponds to the type of object that it represents. 
 A reference is made from the utilising Function to the Property. 
 A reference is made from the Property to the class that describes its type. 
 A third and final reference is made from the calling Function to the Function that it intends 

to use in the property’s type. This is described in the figure 4. 
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Figure 4: Demonstration of the various references that are created when a Function F1refers to a 
Property P1 inside its own class. The property is of type C2 i.e. the property is an instance of C2. 

5.5.5 Rules of the Code Base 
All creational routines are performed inside the code base class. This ensures that the rules are 
complied with and that storage constraints are obeyed.  In addition the following rules are applied: 
 

 All code is ultimately connected to an initial system event. This arises as the Code Base 
enforces that all Code Constructs must lie on a run. A run is defined as an execution path 
that originates from a System Event, then continues iteratively through all connected 
functions until they complete. 

 Code constructs must be added to classes (with the exception of global properties which 
are stored in the code base). 

 Properties can be class or global scope. 
 Functions can refer to Properties in their local class or refer directly to Functions in the 

current or in other Classes. 

5.6 The Agent 
The Agent is a system concept that embodies the role of a developer in a real software project. 
Agents are stateful with the ability to ‘learn’ the system as they modify and add to it. The agent’s 
primary concern is to facilitate the conversion of requirements into code using an “Evolution 
Policy”. The Evolution Policy is a plug-in that defines the fundamental operations that turn a 
single new Task into Code in a specific experiment. The agent is responsible for facilitating this 
(locating the class to extend if required etc). Details of the agent are based on the model 
described by Gilbert [Gilb00].  

5.6.1 Multiple Agents and Agent Memory 
Each agent has a memory of the code constructs that they were responsible for implementing in 
the code base. This can be used in the evolution policy or complexity metric to improve the depth 
of the simulation, particularly when considering multiple agents acting on the code base. When 
multiple agents are configured each new requirement is implemented by a randomly selected 
agent taken from the pool. Agent memory is built as agents create code. In the current 
implementation agent memory is only incremented for code that is created. However provision 
has been made for this to be extended to include code that is changed or viewed by the agent. 
 

Class C1 

Property: P1 

Function F1: 
Uses Function F2 of 
Property P1 which is 
of Type C2. 

Class C2 

Function F2 
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The agent’s memory also leaks over time3 based on an environment variable that controls the 
number of epochs (implementations of a complete requirement) before the agents memory fades 
completely. The fading memory of each agent is available to the experimenter in the various plug-
ins. 
 
The agent’s memory is incremented using a code construct called the Costing Proxy. This 
provides a layer between the API, used by the various plug-ins, and the code base itself. All 
creation events are intercepted and increment the agent’s memory.  

5.6.2 Agent Response to different Change Types 
The action of the agent is separated into sections based on the change type of the requirement 
as the agent must responds differently to different Change Types. The various behaviours are 
enumerated in the following three sections. 

Change Type of New  
New functionality is added either to a system event of a task or requirement that is to be 
extended: 
 
System Event 
Creation: 

If the requirement operates on a system event then this is effected in the 
code base. This involves the creation of a new class and function for the 
event. 

Establishing a 
Starting Point: 

The starting point is either a new system event (as above) or the first 
class/function in the task/requirement that is being changed/added to. 

Entity Creation: The introduction of a new entity always results in the creation of a new 
Class. Classes always contain a stateful structure. 

Function Creation: Functions are added to the starting class. 

Change Type of Augmentation 
Augmentation can be applied to another Requirement or Task with the degree of augmentation 
being specified in the new requirement. The degree of augmentation controls how much of the 
original requirement will be altered when the new one is applied. This is performed by 
conditionally changing each code construct that is selected. 
 
System Event 
Creation: 

N/A 

Establishing a 
Starting Point: 

If augmenting a Task then the starting point is all classes and functions 
that correspond to that task. The selection is reduced by the 
Augmentation Ratio. 

Augmentation: The augmentation of each function deemed valid by the agent is sent to 
the Evolution Policy for augmentation. 

Change Type of Change 
The task to change and the new change task are both passed straight to the evolution policy for 
implementation. 

5.7 The Evolution Policy 
The Evolution Policy is the plug-in that bares most responsibility for evolving the code base and 
thus is a focal point defining experiments. The experimenter must implement four functions in the 
Evolution Policy to cause the code base to evolve. Each one corresponds to the conversion of a 

                                                      
3 It is assumed that implementation cost is proportional to time. Thus time is taken from the total 
Cost of implementation so far in the code base.  
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different Task with a specific Change Type into code. The signatures on the interface are 
displayed below: 
 

 
The evolution policy also provides a set of utilities that allow the experimenter to customise their 
implementation. These include: 
 

 Memory: The memory of the agent is accessible from the evolution policy. This provides 
feedback on the agent’s recall of the various code constructs that they created (see 
section 5.6.1). 

 Code Metric: The evolution policy uses a code metric to retrieve feedback from the code 
base before making a change. The code metric also records a cost which is used as a 
measure of the experiment (see section 5.8). 

 Coupling Type: A specific coupling type is associated with References as they are 
created. The specific variety of coupling type used is determined by the evolution policy 
(a basic coupling type is used by default). It is proposed that future experiments will 
define custom coupling types which can subsequently be used in the evolution policy and 
code metric to provide feedback on the coupling of structures that exist in the code base. 

 
Additional utilities are available but have not been validated with experimental results. These are 
discussed in section 12. The default implementation provided in this dissertation is discussed in 
section 8.2. 

5.8 Code Metric 
The Code metric is a facility by which the complexity of a code construct can be measured prior 
to it being extended, augmented or changed. The Code metric is one of the key plug-ins that 
would likely be customized in experiments. A basic implementation for a complexity metric is 
provided as part of this dissertation. This is discussed further in section 8.4. 

5.9 Complexity Injection 
Complexity Injection involves adding a random distribution of extra features to a code construct 
when it is created. This is the fundamental means through which low level complexity (references, 
properties etc) is added. Complexity injection occurs whenever a new code construct is created. It 
exists as a plug-in with a simple signature so that it is easy to alter the level of complexity injected 
into any specific experiment. The default implementation provided in this dissertation is discussed 
in section 8.3. 
 
The Complexity Injector provides the possibility for increasing the level of granularity that the 
simulation supports. Whilst not implemented in this version, the complexity injector could be 
changed to inject lower level code constructs such as ‘if’ statements, loops and local variable 
assignments. This would provide a finer level of granularity as well as allowing more realistic code 
metrics and evolution processes to be applied to the code base.  

5.10 The Difference between the Evolution Policy and the Complexity Injector 
The Complexity Injector and the Evolution Policy have similar, but fundamentally disparate roles. 
The Complexity Injector is used only when a new Code Construct is created (It is triggered 
automatically from the constructor). Its role is to add complexity to new constructs so that the 
code base evolves with sufficient detail to make it realistic. Thus it takes the responsibility for this 
more mundane task away from the Evolution Policy. 
 

public Cost processNewTask(Class startingClass, Function startingFunction,Task task); 
public Cost processAugmentation(Function startingFunction, Task task); 
public Cost processChange(Task newTask, Task taskToExtend); 
public CouplingType getCouplingType(CodeConstruct caller, CodeConstruct provider); 
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The Evolution policy is left to add more complex and purposeful features to the code base. Such 
features tend to arise from the larger evolutionary goals of the experiment. For example 
whenever augmenting a class the Evolution Policy may dictate the creation of a new Class. This 
would have complexity injected into it like any other class. However the Evolution Policy would 
then add more interesting and focussed features such as tying the new class back to the one 
being augmented with various references and parameters. 
 
In summary, the Complexity Injector is responsible for the monotonous detail that must be added 
to all code constructs when they are created (classes need functions and references etc). The 
Evolution Policy is responsible for shaping how the structures between classes and functions 
evolve, beyond the ‘random’ growth imposed by the Complexity Injector. 

6 Measuring the Simulation 
The simulation is measured via a cost function. The total cost is split into two different sections 
that indicate the separation between the cost of creating and the cost of understanding code. 
  

 Implementation Cost: The cost incurred in creating new code. This is proportional to the 
number and type of code constructs created (the cost for each construct is configured in 
the Environment Variables). 

 Metric (Comprehension) Cost: The metric cost emulates the action of an agent 
comprehending the code base prior to making a change. The term metric cost is used as 
the cost can be based on any ‘metric’ devised from the measures available in the 
simulation.  

 
The ‘Implementation Cost’ is calculated by the Costing Proxy. This class sits between the 
Evolution Policy and the Code Base and increments the cost of code units as they are created. In 
its default implementation the overall implementation cost is proportional to the number of code 
constructs that have been created. The cost weighting of each type of code construct is defined in 
the Environment Variables. 
 
The cost incurred by comprehending code prior to making a change is more complex. It is 
calculated through feedback from the CodeMetrics class which takes into account various 
parameters such as the agent’s knowledge and apparent complexity the source code itself. The 
metric implementation exists as a plug-in so can easily be varied.  
 
Cost also provides a notion of time to the simulation. The basic unit of time is the average costing 
for an epoch. The total costing in the simulation run is also tracked (in the AgentController class). 

7 The Graphical User Interface 
The GUI has three views, one for the Requirements and two for the Code Base. It also displays 
summary data concerning the progress of the simulation. The GUI is designed to facilitate 
comprehension of the code base structure as the simulation evolves. This allows the 
experimenter to get a feel for how different factors that have been introduced affect the evolution. 

7.1 Running the Application 
The application can be downloaded and run from the web page detailed below. A copy of the 
source code is also available so that the various plug-ins can be altered.   
 
http://www.benstopford.com/devsim/devsim.shtml 
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7.2 The Requirements View 
The Requirements view presents a tree view of the requirements that have been generated. 
When the application starts a single requirement (of type ‘New’) is added. The user can click on 
Requirements to view the included Tasks. 
 

 

7.3 The Code Base Class Drill View 
The GUI supports a view of the code base that allows class hierarchies to be analysed. The top 
level of the tree represents all classes and global properties in the system. Drilling to the next 
level displays functions and properties inside that class. Drilling further into a function reveals the 
tasks that contributed to it as well as all outward references that are made. References can be 
drilled iteratively to view the whole call stack. 

 

7.4 The Code Base Event View 
The GUI supports a second view of the code base that allows system events to be traced through 
the resulting code that they execute. The top level of the tree represents all system events. 
Drilling to the next level displays classes and functions that are executed. References from these 
functions can then be drilled further as in the Class Drill View. 

Properties have a Type referring to the Class 
they represent. Inward Refs refer to the internal 
functions that reference the Property. 

Functions display the Tasks that contribute to 
their makeup. They also have nodes for each 
outward reference to an internal property or 
function in this or another class. 

Classes and Globals represent the top level 
nodes. Class nodes can be expanded to reveal 
their Properties and Functions. Globals behave 
as properties (described below). 

Requirement Type = ‘New’  
Operates on Task - Event 120 

DO = Data Object 
EN = Entity 
Op = Operation 
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7.5 The Readout Panel 
The control panel displays features of the evolution as the code base evolves. All readouts refer 
to the code base as a whole. 

 
 
Readout Description 
Epochs Completed The number of Requirements that have been added to the code base. 
Tasks Completed The number of Tasks that have been added to the code base. 
Total Classes The total class count. 
Total Functions The total function count. 
Av Functions Per Class The average number of functions that exist inside each class one 

average over the whole simulation run. 
Av Tasks Per Function The average number of tasks that exist inside each function on 

average over the whole simulation run. 
Implementation Cost The cost associated with the creation of new code. 
Metric Cost The cost associated with the metric output for classes that are 

extended and changed (or other implementation configured by the 
user in the evolution policy). 

7.6 The Control Panel 
The Control Panel provides control for the simulation itself. The buttons provide the following 
functions:-  

Events are a special kind of 
function and as such result 
from Tasks as shown.

The stack calls can be traced 
down from each initial event as 
subsequent functions call one 
another.
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Function Description 
Create Requirement Add a new requirement to the requirements list. This will add the 

requirement so that it can be viewed but will not add it to the code base. 
Add Requirements to 
Code Base 

Adds the created requirements to the code base. 

Expand All Expands all nodes in the visible tree pane. 
Collapse All Collapses all nodes in the visible tree pane. 
Clear Unimplemented 
Requirements 

Clears all requirements that have not been implemented in the code 
base. 

Clear Code Base Clears the code base but not the requirements. 
Clear All Clears Code Base and requirements. 

7.7 The Data File Output 
The output of the simulation is sent to a file. This file is saved in a tab delimited format and 
contains all empirical data provided in the GUI itself. The path to the output file is defined in the 
EnvironmentVariable class and the name can be overridden in the GUI. 

8 Default Plug-in Implementations 
This section discusses the workings of each of the four default plug-ins supplied and shipped with 
the simulation. They define a very basic set of policies through which the fictitious code base can 
be evolved. They are estimates and as such do not necessarily represent an accurate depiction 
of the evolution of a real code base. Instead they provide a starting point from which to validate 
basic behaviours of the framework. It is anticipated that future experiments will improve on the 
basic assumptions they make, incorporating more realistic evolution policies and metrics. It 
should also be noted that in each case the programmatic configuration of these plug-ins allow 
them to be easily extended to support more complex responses. 

8.1 The Default Requirements Policy 
The Requirements Policy defines the various ‘ingredients’ used by the Requirements Generator 
to create requirements. These generally represent ratios between the various types that are 
available.  
 

Implements the specified number 
of iterations of both requirements 
generation and implementation in 
the code base. 

Save the log to a file. The file 
name can be specified. 

Alter the number of developers in 
the simulation. 
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Setting Description 
Calculate Task Type 25% of the time use Data Entity 

10% of the time use Entity 
65% of the time use Operation 

Conceptual Type Reuse Percentage 3% 
Calculate Task Revisit Type 25% of the time use Data Entity 

10% of the time use Entity 
65% of the time use Operation 

Mean Number of Tasks per 
Requirement 

Change Type = New            => 5 
Change Type = Augment     => 3 
Change Type = Change       => 2 

Mean Task Size 2 
Calculate Change Type 15% of the time use Augment 

40% of the time use New 
45% of the time use Change 

Augmentation % A % selected at random 

8.2 The Default Evolution Policy 
The system implements a default evolution policy. This is of a basic form that only acts to evolve 
the code base in a random fashion with no overriding structure. This should be extended in 
specific future experiments. 
 
Function Implementation 
Process New  If the Task Type is an Entity then create a new class. 

If the Task Type is an Operation then add, on average, three function to 
the existing class. Each new function includes a property that is linked to 
it and two other existing functions in the class. 

Process 
Augmentation 

 If the Task Type is an Entity then: 
o Create a new class for the entity. 
o Create 0-2 functions to the base class. 
o Add 0-2 references between base and Entity classes 

 If the Task Type is an Operation then: 
o Create 0-2 functions to the base class. 
o Create 0-2 extra references from the base class to functions in 

other classes (selected at random). 
Process Change  Add the new task to the function being changed. 

 Add a new function with properties linking them back to original function. 
 Add a reference to a random function (performed half the time) 

8.3 Default Complexity Injection 
Default implementation for complexity injection is: 
 
Function Implementation 
Function Creation  Create references to, on average, 2 other functions selected at 

random. 
Class Creation  Create an average of 3 functions inside the new class (note that the 

creation of a Function will fire the complexity injection for Function 
creation). 

 Create an average of 3 properties inside the new class. 
 For each function link to 1 or 2 of the properties created. 

Property Creation No Implementation. 
Event Creation No Implementation. 
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8.4 Complexity Metric 
The default behaviour for measuring the complexity of a function is defined by: 

 
 The number of Requirement Tasks that contributed to the function. 
 The number of functions that refer to it (i.e. the amount that it is reused). 
 The number of other functions that it refers to (i.e. the number of outward references). 

 
Comprehension of a function is assumed to require knowledge of all functions in that class unless 
the Agent has an existing recollection of it. If the agent created the class then they are assumed 
to have full knowledge of it and the complexity (to them) drops to zero. The concept of memory 
leaks is available but is not utilised in this implementation. 

9 The Software Implementation of the Simulation 
The framework for the simulation consists of 42 java classes including the four plug-ins. This 
section documents some of the major constructs in the system as well as commenting on the 
software architecture implemented. 

9.1 Design Considerations 
Care was taken in the simulation to ensure that the code is structured in a way that maximises 
extensibility whist minimising the quantity of code that the experimenter need be concerned with. 
This is achieved through the architectural aim of separating mechanism and policy4. In this 
context the mechanism is the simulation framework with its infrastructure for the creating and 
extending a factious code base. The policy is then the various plug-ins that define how the code 
base is extended, measured etc. Thus, for the most part, the experimenter need only be 
concerned with the five plug-in classes, delving into the rest of the code base only when the 
fundamentals of the framework need to be changed. 
 
An important design consideration is that almost system settings result from programmatic 
policies. These either implement some function, such as evolving a particular type of requirement 
or return a distribution of values such as the different Requirement Types used to generate 
requirements. Keeping these policies code based rather than simple constants or buttons in the 
GUI retains a high level of extensibility in the framework.  
 
As the simulation grows its complexity will increase as additional simulated factors are added. It is 
anticipated that this increase in the complexity of the system will require a flexibility that can only 
be offered by programmatic policies. Simple constants could not deal with the various conditions 
that are likely to ensue as the simulation size increases. The drawback is that a dynamic class 
loader is required to make changes whilst the simulation is running. However free class loading 
utilities such as Eclipse [Eclip] this is not considered to be too much of a hindrance.  

9.2 The com.devsim.plugins Package 
Each plug-ins represented as a policy which is a design mutated form the common design pattern 
structure known as the Strategy Pattern [Gam95]. Each implements an interface that defines the 
contractual obligations that the Policy must perform. The experimenter is then free to define how 
these obligations are fulfilled. 
 
The plug-ins are: 
 

                                                      
4 The idea of separating Mechanism and Policy comes from the notion that the human mind can 
only deal with a finite number of concepts [Mil56]. This concept has been adapted and reused by 
numerous authors including Parnas [par72] often going under the names such as Abstraction and 
Design By Contract [Mey92], [Fow97], [Fow02]. 
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 com.devsim.plugins.CodeMetrics 
 com.devsim.plugins.EvolutionPolicy 
 com.devsim.plugins.RequirementsPolicy 
 com.devsim.plugins.ComplexityInjector 
 com.devsim.plugins.EnvironmentVariable 

 
These provide access to customisable features for the simulation as discussed in the previous 
sections. 

9.3 The Code Base (com.devsim.code.CodeBase) 
The code base is the class responsible for holding all the simulated code constructs and the 
relationships that tie them together. In particular all construction of code constructs is performed 
in the CodeBase class via the “create…” methods. 

9.4 The Code Base API (com.devsim.code.CodeBaseAPI) 
The code base API interface provides an API to external uses (such as the plug-ins package). 

9.5 The Costing Proxy (com.devsim.code.CostingProxy) 
The Costing proxy implements the API interface so that it can act as a proxy between plug-ins 
and the code base. It calculates the cost of a specified set of calls. The costs for the creation of 
each type of code construct are defined in the EnvironmentVariable class. The costing proxy 
increments the agent’s memory only when code constructs are created. 

9.6 The Agent (com.devsim.evolution.Agent) 
The agent facilitates the evolution performed by the Evolution Policy. It defies the starting class 
and function to use based on the Task and mediates the appropriate executions of the evolution 
policy. 

9.7 The AgentFactory (com.devsim.evolution.AgentFactory) 
The Agent Factory is responsible for creating and supplying the multiple agents that may exist in 
the system. The number of agents in the simulation is controlled by a setting in the file 
EnvironmentVariable.java in the plug-ins package. When multiple agents are specified a different 
Agent will be selected from the pool for each new requirement that is implemented. 

9.8 Memory (com.devsim.evolution.Memory) 
The Memory class holds the agents memory. In particular it allows the calculation of a discount 
factor which simulates the agent’s loss of memory over time (The basis for Time in the simulation 
is taken from the average effort required to implement a requirement).  Memory is currently not 
set to leak but this can easily be changed to leak by altering the CodeMetrics class to use the 
Memory.remembersPortion() method in the Memory class. 

9.9 Random Number Generator (com.devsim.utils.RandonGen) 
The random number generator provides all stochasticity to the simulation. It has a range of utility 
functions that perform useful tasks other than just generating random numbers. These include 
selecting random values from lists, perform a desired function a random number of times and 
generate random Booleans and percentages. 
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10 Experimental Method 

10.1 Experimental Design 
Experimenters must design experiments that investigate features to which the simulation is 
sensitive. These are typically different methods by which code can evolve at a macroscopic level 
(i.e. at the level of functions, parameters and their interaction). The design must follow one of the 
following two approaches: 
 

 Investigate the interaction between a specific evolutionary factor and other factors which 
are installed in the simulation (Where a ‘factor’ describes something that shapes 
evolution such as refactoring). 

 Investigate the incremental effects of evolutionary factors on themselves through 
repeated application of the specific factor under investigation. Alternatively the reaction of 
the factor to different running conditions could be investigated (such as environments 
with different proportions of new development, change, augmentation etc). 

 
Experiment designs must consider: 
 

 Modelling of the Evolutionary Factor: How the new factor is to be modelled in the 
simulation. This means defining how the code base will be affected by the action of the 
new factor based on the input requirements and the existing code base. 

 Measurement of the Evolutionary Factor: How the resulting evolution will be measured 
and how this measurement will feed back into future evolution cycles. 

 
Both of these factors are required so that a feedback loop is set up between the code base and 
the evolution policy, via the metric, as described in Figure 1.  

10.2 Experimental Method 
The experiment method is defined by the following steps: 
 

 Identify the problem to be investigated. 
 Develop a dynamic hypothesis to explain the cause of the problem. 
 Map each part of the dynamic hypothesis to its appropriate plug-in in the simulation 

framework. 
 Make the relevant plug-in alterations required to fulfil the hypothesis.  
 Tests the simulation model to ensure that it reproduces real world behaviour. 
 Add the implemented property to the full simulation model to allow investigation of the 

interactions between it and other simulated factors (note that all results are comparative 
rather than absolute measurements). 

 Devise and test alternative policies that will also solve the problem and test via previous 
steps. 

10.3 Tuning the Experiment 
The second phase involves tuning the experiment so that it behaves in an expected manor. 
Initially this is best performed with the user interface views (see section 7), supplying small 
numbers of requirements so that the code base does not bloat. Tuning is useful for ensuring that 
the changes made to the evolution policy have the required effect and the code base structure is 
evolving correctly.  
 
When tuning the simulation it is useful to break it down into its simplest units so that each section 
can be tested separately. This can be done by altering the various settings (particularly in the 
Requirements Policy) so that each feature can be tested in isolation. For example testing, with 
the requirements policy configured to only allow one Change Type at a time, allows each section 
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of the evolution policy to be tested independently of the others. Further tuning can then be 
performed through analysis of the output file.  

10.4 Running the Experiment 
Experiments are configured based on the required plug-ins and the associated simulation 
environment. Nominally experiments take the form of several runs in which a single parameter is 
varied in either the simulation environment or one of the plug-ins.  
 
In the results presented in this dissertation each set is taken as the average of three separate 
runs. The output is then exported for graphical analysis.  

11 Results: Experiments and Calibration of the Framework 
The simulation framework is calibrated through the execution of a set of experiments that analyse 
performance over different variations on the standard settings. The goal is to ensure that the 
simulation results agree with those expected, both through an intuitive understanding of the 
software engineering process and those provided by empirical observations. 

Calibration (1): The Statistical Variance of Results 
Many of the parameters used in the simulation have an underlying statistical variance making 
each evolution of the system slightly different. It is therefore important to provide measure of the 
implicit variation in results. The below table demonstrates the average standard deviations for the 
linearly evolving variables taken over 900 measurements of three evolution profiles. The results 
for these measurements are shown in full in Appendix (B). 
 
 Std Dev Mean 
Class 8.12 261 
Function 86 1552 
Tasks per Function 0.0187 1.1680 
Functions per Class 0.3041 5.7414 

Experiment (1): Increase in Source Code Size under Standard Settings 

Aim 
The aim of the first experiment is to ensure that running the simulation under standard conditions 
(i.e. where the various experimental parameters are set to ‘typical’ values) causes the code base 
to expand in size in a manor that approximates a real software project. 

Method 
The experiment was run for 300 Epochs (requirement implementations) with the first 20 Epochs 
being exclusively ‘New’ requirements. The change type ration for this experiment was set to: 
 
Change Type Ratio 
Augment 15% 
Change 45% 
New 40% 
 
And each result represents the average formed over three separate runs. 

Results 
The results of the class, Task and Function counts over the evolution is shown in Graph1.  
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Task, Class and Function Counts over the Evolution of the Simulation
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The increase in task, class and function count are all linear over the life of the evolution which is 
expected as there is no modelled non-linearity between current size and size increase. All three 
measurements show slight variation due to the stochastic nature of requirements generation and 
complexity injection. There is also an observably increased gradient for the first twenty epochs in 
the Class and Function plots. This arises due to the first twenty requirements having a 
requirement type of ‘New’. New requirements increase the probability of producing new code 
constructs and hence explain the increase in gradient. 
 
This behaviour is corroborated by an empirical study made by Capiluppi et al [Cap04] of the 
ARLA open source system. In this study Capiluppi et al found that the number of source files 
grew linearly as the project evolved. This is comparable to the simulated growth of class files 
being linear with a positive gradient. The results for Capiluppi’s experiment are shown in Graph 2 
for comparative purposes. 

Graph 1: 
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Capiluppi et al also provide a study of the distribution of average lines of code per file over 
various releases. Their results show the average number of lines per file increasing slightly as the 
system evolves. This increase is approximately linear with a small positive gradient as shown in 
Graph 3.  
 

 
 
A comparable result was generated with the simulation framework and is displayed in the Graph 
4. This chart shows the evolution of task density over the simulation where task density 
represents the average number of tasks per class. The comparison assumes that on average the 
number of tasks will be proportional to the number of lines of code in a real application. 

Graph 2: 
reproduced 
from [Cap04] 

Graph 3: 
reproduced 
from [Cap04] 



 31

Tasks per Class during Evolution
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Both Capiluppi’s results and those formed through the simulation framework are approximately 
linear with a small positive gradient.  The initial readings show some variation from this trend but 
this is considered to be normal when the simulation is stabilising. The functions per class and 
tasks per function (which theoretically would combine to give the tasks per class) are shown in 
Appendix (A). These results validate the growth of the simulation in terms of number of files and 
file size through replication of a profile that is empirically substantiated. 
 

Experiment (2): The Effect of Requirement Type on Code Comprehensibility 

Aim 
The aim of this experiment is to investigate whether the Requirement Type has an effect on the 
comprehensibility of the code base that is produced. The expectation is that this link should hold. 
The default code metric is dependent on the Task density in the code. Thus Change Types such 
as New, which are associated with the creation of high numbers of classes, should result in 
higher comprehensibility as the density of Tasks overall is lower. Conversely Change Types such 
as Change or Augment will operate on existing code, increasing the task density and this should 
be measured in the metric.  
 
Thus it is expected that increasing the proportion of the requirement type “New” would reduce the 
metric count as more classes would be created, decreasing the task density and coupling. 
Conversely, increasing the proportion of “Changes” and “Augmentations” is expected to increase 
the code metric value. 

Method 
This proposal was validated by configuring an experiment with different distributions of 
requirement types. The experiment was run for 300 Epochs (requirement implementations) with 
the first 20 Epochs being exclusively ‘New’ requirements types as in previous experiments. The 
statistical distribution of each requirement type in each experiment is shown in the below table 
(configured in the Requirement Policy): 

Graph 4 
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Change Type Control Run 1: High New Run 2: Low New 
Augment 15% 5% 25% 
Change 45% 15% 70% 
New 40% 80% 5% 
 
The experiment measures the evolution cost for each of the three different distributions of 
Requirement Types, averaged across three independent runs.  

Results  
The results, shown in Graph 5, demonstrate a distinct increase in curvature as the ‘Change’ and 
‘Augment’ requirement predominate with the run that favours ‘New’ requirement types having the 
lowest metric cost increase. This validates the expected behaviour with the new requirement 
types creating a higher proportion of classes thus reducing the class density and hence the code 
metric value. Full results for this experiment are available in Appendix (C). 
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Experiment (3): Varying the Number of Agents 

Aim 
The simulation provides a facility for specifying the number of agents that contribute to the 
evolution of code. Each agent has a memory of all code they created (see section 5.6.1) and the 
default code metric takes this into account dropping the metric value immediately to zero if the 
agent created the code that is being measured. 
 
These factors imply that the code metric value should evolve more slowly for low numbers of 
developers as they will each have been responsible for more code and hence have more memory 
coverage of the code base. The aim of this experiment is to determine if this assumption holds. 

Graph 5 
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Method 
The experiment was configured to measure this proposition over five different runs with five 
different numbers of agents contributing to evolution of the code base. Each experiment was run 
over 50 epochs with the results displayed in the Graph 6. 
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Results 
The results show that development with two agents is most efficient and thirty is least. The 
complexity cost increases with the number of developers due to the increased cost associated 
with having to understand coded prior to changing it. When there are fewer developers this cost is 
lower as each developer was responsible for the original construction of a higher proportion of the 
code base and thus has less to learn. This validates the assumed behaviour stated above. In 
addition implementation cost stayed approximately constant in all experiments (see Appendix (D) 
for full results). 

11.1 Analysis and Further Measurements 
The results presented in this section provide confidence that the simulation performs in a manor 
that approximates the features of a real world application in the areas tested. Such a conclusion 
is corroborated by intuitive expectations as well as empirical results. 
 
Confidence in the simulation results could be increased further through additional validation 
against other empirical sources as well as further experiments that investigate facets of the 
simulation not discussed in this section. Details of the unimplemented features are documented in 
section 12. 

12 Other Framework Utilities 
The framework provides a host of utilities that have not been included in the basic experiments 
performed here. These are summarised below: 
 
Requirements 
Generator 

The requirements generator has a variety of settings that have not been 
investigated fully. These are detailed in section 5.4. 
 

Graph 6 
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Advancing the 
Evolution Policy 

As previously discussed the evolution policy can be extended to include 
any number of extra features. Most notably the introduction of feedback 
from the code base to the evolution policy via the code metrics would 
facilitate the modelling of complex non-leaner behaviours. 
 

Coupling Type The coupling type is defined in the evolution policy but is not 
implemented in the default behaviour. This could be included in future 
experiments. 
 

Task Size Each task has an impact level or size associated with it. This could be 
used in the code metrics to provide a further level of granularity. 
 

Abstraction Type and 
Task Type 

The abstraction type is modelled in Tasks and Requirements and acts as 
a conceptual link between disparate code entities that represent similar 
concepts. The Task type denotes whether the requirements are 
Operations, Entities or Data Entities. These segregators are designed to 
be used to model Object Orientated concepts in the evolution policy and 
code metrics. 
 

Leaking Memory The ability for Memory to leak over a defined period of time is provided in 
the framework but not implemented in the default behaviour. 
 

Global Variables Global variables are currently not implemented in the default evolution 
policy. They can easily be added to the code base via the API. 
 

13 Further Experiments 
The aim of this framework is to allow experimentation and validation of evolutionary theories in 
software engineering. To this aim the simulation provides four basic elements, each of which can 
be varied independently to explore different experimental aims. These basic elements are 
Requirements, Evolution, Measurement and the Code Base (assumed to be constant) as shown 
in Figure (5).  

 
Exploring the simulation process further involves investigation of both of the two major 
relationships that the framework exposes. The experiments presented in this dissertation only 
explore Relationship (1), the non-linearity between requirements and their resulting code 

 

 Evolution  

Measurement 

Requirements 

Code Base 

Relationship (1): Requirement 
to Code Base non-linearity. 
 
Relationship (2): Repeated 
Evolution non-linearity. 

Figure 5: The two major configurable relationships in the system. The dashed arrows represent the 
non-linear relationship between requirements and the code base. The solid line represents the 
feedback circuit by which the evolution can alter based on the state of the code base itself. 



 35

implementation. Relationship (2), as yet unexplored, results from the feedback loop that exists 
between the code base and the evolution policy via the code metrics. This loop feeds back 
information to the evolution policy regarding the structure of the code base at the time that the 
change is being made. This allows agents to react to the differently according to the state of the 
code structures being changed.  This feedback loop is fundamental to the modelling of the 
underlying complex processes that are generally evolve in dynamic systems [For69]. 
 
As well as the relationships between the four major entities in the simulation, future experiments 
will explore evolution of software though one of two experimental methods. The first is the 
simplest and involves investigation of single evolutionary concepts in isolation or within different 
environmental setups with the repeated effects of application being measured. The second 
involves combining multiple concepts within the same simulation environment and examining the 
complex relationships that result from their interaction. In reality the second method will often 
evolve from the first. These two methods are discussed in the next sections. 

13.1 Investigating Repeated Evolution of Single Evolution Concepts 
Experiments of this type investigate single factors, applied repeatedly under different 
environmental conditions, extending the approach taken in this dissertation. For example an 
experiment might investigate the effect content coupling has on evolution over a number of 
different types of project i.e. small/large, high change / Greenfield etc. 
  
Initially the simulation might proceed by adding the following topics to the model: 
 

 Adding Design Principals: Adding new and validated design principals to the evolution 
policy is fundamental to making the simulation more realistic. Many principals could be 
introduced from basic ones such as simple reuse to more complex examples such as 
‘encapsulate what varies’. 

 Adding Refactoring: The introduction of refactoring methods to the evolution policy to 
be triggered by code base feedback. 

 Adding Coupling Types: An investigation into how coupling types affect evolution both 
in terms of output and code base structure.  

 Adding Global Data: The use of global data and its evolution. 
 Adding Inheritance: The simulation already supports the concept of Abstraction Types 

in the Requirements section which would form a basis for modelling inheritance and other 
forms of abstraction. 

 
More complete experiments could also be run to service more focussed goals. These might 
include: 
 

 Starting Structure: An investigation of whether evolution is affected by the starting 
structure of the code base.  

 Iterative Development: A study into the effects iterative development cycles have on a 
code base vs. more traditional, lengthy cycles. 

 The Effects of Componentisation on Evolution: Experiments on this topic might 
address whether componentising a system as it grows makes it easier to extend and 
maintain? 

 The Effects of Inheritance: Is inheritance a help or a hindrance? Do application 
structures really benefit from its existence? Does inheritance degrade an applications 
structure and if so what can be done to reduce this effect over the long term evolution of 
a system?  

 Separating Concerns in a System: An investigation into the effects ‘Separating 
Concerns’ has on an evolving system (for example when splitting GUI and business logic 
such as the MVC Pattern [Fow02]). How does the overhead weigh against the benefit 
induced? A worked example of this is presented in the next section (13.2). 
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 Analysis of the Evolution of State: State evolution is a topic that has gained little light 
in recent research when compared to its counterpart, behaviour. State adds complexity to 
the interaction of components at runtime. This is likely to have a detrimental effect to 
software as it evolves but there is little data on the evolution of this. Simulation would 
provide an ideal means to increase experimental data in this field as the runtime 
modification of state could be simulated in this framework with relative ease.  

 The Rules of OO Software Languages: A more far reaching goal would be to use the 
simulation to adapt of the laws that bind the OO paradigm. Similar experiments could 
also investigate the effects Aspect Orientated Programming [Kicz97] has on the structure 
and evolution of code.  

13.2 Separating GUI and Business Logic: A Thought Experiment 
This section describes a brief “thought experiment” which explores how the simulation framework 
might be used to investigate the separation of GUI and business logic from both code structure 
and productivity standpoints? The stages of the experiment would be: 
 

1) The aim is declared to be an investigation of the effects of splitting GUI and business 
logic in an evolving system. 

2) The Requirements process is altered to incorporate the concept of a special “GUI 
requirement”. 

3) A new Evolution Policy is created. This takes GUI requirements and implements them in 
separate classes to the business logic. As GUI and business tasks are added to the code 
base the evolution policy will create references between them. Different coupling types 
are used to link the GUI and business components.  

4) The code metric is altered to take into account the fact that separate concerns should be 
more comprehensible (this could result from some more fundamental metric such as on 
based on Millers magical number seven [Mil56]). 

5) A control experiment is run which mixes these new GUI requirements with the regular 
experimental parameters and policies. 

6) The final experiment is run to investigate the extra effort required to add such features 
and the effect it has on the structure when evolving in different environments. 

13.3 Investigating Multi-Faceted Evolution 
The most interesting experimental results may arise through measuring the interaction of different 
features, such as those suggested in the previous section, on one another. Such interactions can 
quickly create complex non-linear responses which can only be observed either through 
simulation or empirical analysis and thus are a primary goal for any experiment in this area.  

14 Further Work 
Forester’s analysis of social systems [For71] investigates various factors such as population 
trends and the quality of urban life etc. He utilises computational models developed in the field of 
system dynamics [SysD] with some interesting conclusions. In particular he found several cases 
where practitioners installed unsuccessful solutions problems they had. Analysis with a simulation 
model revealed that although a static analysis indicated the solution should be beneficial, when 
interacting with the surrounding system the solution actually made the situation worse. For 
example he notes: 
 
“In many instances it emerges that it is the known policies applied to aide a system which actually 
causes the troubles.”  [For71] 
 
Forrester is pointing at his observations that many of the processes put in place to help address 
various problems often end up making them worse. The real response of the ‘remedy’ is to 
worsen the ‘condition’. This counter intuitive conclusion arises as the complexity of the system 
may act to mask the true action of an attribute.  Whether similar situations exist in the field of 
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software evolution is unknown but the simulation of software evolution offers a unique opportunity 
to investigate whether or not such relationships do exist in our field.  
 
Another approach and one that is often taken in the field of Software Process Simulation is to use 
multi-faceted models as decision support systems for managers. The process simulation 
approach has largely been pioneered by NASA who utilise their wealth of empirical data on 
previous software projects to fuel the software process simulations. Topics investigated include 
the defect detection efficiency of code inspections [Mun03]. This approach could be beneficial in 
the simulation of software evolution, applied as a form of decision support tool. Such a tool could 
be used to predict the effects that different environmental factors or coding practices have on a 
code base, allowing managers to tune their coding practices accordingly.  
 

14.1 Improving the Simulation Program 
Other than the various extensions to the simulation model a number of issues could be improved 
in the simulation program itself to make it easier to experiment with:  
 

 A method for analysing the structure of the code base at a single point in time. This might 
allow the structure of the code base to be measured rather than the cost alone. This 
would likely take the form of a suite of custom metrics that would analyse the entire code 
base at set points in the experiment.  

 Allow the definition of multiple plug-ins. This would be a relatively simple task and would 
allow different policies to be set up for different behaviours of the system. For example 
there might be different metrics plug-ins for different standard software metrics. 

 Alteration of the stochastic elements so that they are configured via standard 
distributions. For example rather than specifying the Augmentation Percentage it would 
be better to provide a standard deviation for the distribution of Augmentations. 

 Incorporate a dynamic class loader into the simulation so that plug-ins can be changed 
while the application is running without the need for an external device.  

14.2 Alternative Simulation Techniques 
The simulation model presented here is a custom implementation but there are a number of other 
frameworks and modelling tools available. Vensim [Vensim] provides a rigorous approach that 
should be considered where the extraction of mathematical relationships between simulated 
features is of primary interest. Vensim produces high quality dynamic feedback models with a 
host of additional mathematical tools for problems such as regression, optimisation etc. Another 
simulation framework is produced by the Arizona Centre for Integrative Modelling and Simulation 
named DevsJava [DevsJ]. These tools were not used in the context of this dissertation as they 
are geared towards heavier, more industrial simulation models and thus were not practical for this 
proposal given the time scale. 

15 Reflections on the Simulation and Experiences Gained 
This project has been an exploration into the simulation to software engineering taken from the 
perspective the code and how it changes. This section summarises the key principals that I have 
learnt in constructing the experimental framework. 
 

 Separating Requirements and Code. Separating the requirements from the code base 
allows the requirements to exist as a separate entity that can be grown independently. 
This has the important side effect that they can be validated prior to being implemented 
as code. Requirements also play a pivotal role in the structuring of any code base. 
Keeping a clear separation between these two makes it easier to define relationships 
between them. It also allows the requirements to be held constant for experiments in 
which they are not involved. 
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 Feedback. Jay Forrester, the father figure of System Dynamics, proposes that feedback 
loops, formed from simple concepts, create the foundations of a large percentage of the 
complexity observed in dynamic systems [For69]. A vital attribute of the simulation is the 
feedback loop between the evolution policy and the code base. This provides a facility to 
model complex, non-linear behaviours which are generated from the interaction of simple 
concepts modelled in the system.  

 The Importance of Minimising the Complexity of the Model. The model as a whole 
must be kept simple. If the model is too complex then it becomes difficult to distinguish 
the cause of different observed effects. This is particularly true if they are attributable to 
several of the variables of the system. This point of view is elaborated further in [Gilb00]. 

 The Importance of Comparison as Apposed to Absolute Measurements. It is hard to 
create a simulation that produces absolute results as each quantity must undergo careful 
and time consuming calibration. Instead results are best obtained by comparing the 
performance of one experiment with another (or a control).  

 The Importance of Validating each Added Element. It is vital to validate all concepts 
thoroughly as invalid assumptions will combine and scale to produce results that may not 
be representative of real live behaviour. 

16 Conclusions 
The evolution of software, in particular its structural erosion over successive generations, 
represents one of the primary problems in software engineering today. Methods for combating 
such issues have been proposed on mass but few possess empirical substantiation. This 
dissertation presents a novel approach to the investigation of software evolution that could 
potentially aid these issues. 
 
From an empirical standpoint, the simulation can be calibrated with a relatively small amount of 
empirical data. Once calibrated, the scope can be broadened to include different environments 
with little or no effort. This reduces the need for long and expensive empirical investigations as 
well as opening the doors to investigations that might not be practical by direct empirical 
measurement.  
 
From a theoretical standpoint the simulation can be used to investigate the interaction of forces in 
an attempt to determine the underlying principals of software evolution. As with the pendulum 
example, software becomes increasingly complex as the simple forces that shape it interact with 
one another. It is the interaction of these forces that make combating software degradation such 
a difficult problem. The simulation framework presented here allows the exploration of these 
issues in way that cannot be performed by other means. 
 
However this dissertation is only intended as a proof of concept. The depth to which the 
simulation model has been calibrated is constrained by the time scales of the project and thus 
further investigation and optimisation of the framework would likely be needed before it could be 
used to generate any significant research data.  
 
Simulation, as a mechanism for deriving rules of behaviour from complex systems, has a rich and 
longstanding background. The field of System Dynamics started applying computational 
simulations to the study of complex systems as far back as the 1960’s and there is a rich set of 
research work spanning multiple disciplines from which knowledge can be leveraged. However 
Software Engineering is a young discipline and the laws of software evolution are still forming. 
Much as in other disciplines, simulation may provide a valuable window into a world otherwise 
inaccessible to current research, expediting the crystallisation laws as well as opening the doors 
to new insights.  
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Appendix A: The Evolution of Tasks per Class 

Tasks per Class during Evolution
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Tasks per Class over a run of 300 epochs with standard settings (20 new requirements enforced 
initially). This can be compared with the results collected analysing the ARLA system [Calp4] 
reproduced below (the lower plot). Both show approximately linear growth with a slight positive 
gradient. 
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Other data included in this experiment was the number of functions per class and the number of 
tasks per function. These are shown below. 
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Tasks per Function
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Appendix B: Variance over Separate Runs 
Variance in system output for various measures over three extended runs 
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Comparison between Metric and Implementation Costs in three Separate Runs of the 
Simulation

-50000

0

50000

100000

150000

200000

250000

300000

350000

0 50 100 150 200 250 300 350

Epoch

Cost 
Impl Cost
Metric Cost
Impl Cost
Metric Cost
Impl Cost
Metric Cost



 46

 

Appendix C: Evolution with Different Requirement Profiles 
Three experimental runs with different requirements type profiles are shown below for different 
measures. The control run is performed with standard parameters. Low New’s refers to the fact 
that the Requirements had a disproportionately low proportion of ‘New’ Requirement Types in the 
requirements. Conversely High New’s corresponds to a disproportionately high number of ‘New’ 
Requirement Types used in the requirements generation process.  
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Implementation and Metric (Complexity) cost over different requirement type profiles. 
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Appendix D: Evolution with Different Numbers of Agents 
This section presents results that document the affect that different numbers of Agents 
(developers) have on the cost incurred in implementing a system. Two plots shown here are for 
Implementation cost and Complexity cost.  
 
Implementation cost is approximately constant between experimental runs as the number of 
developers has no effect on how long it takes to develop the required software in this version of 
the simulation.  
 
However the second plot shows the complexity cost which increases with the number of 
developers. This occurs due to the increased cost associated with having to understand coded 
prior to changing it. When there are fewer developers this cost is lower as each developer was 
responsible for the original construction of a higher proportion of the code base and thus has less 
to learn. 
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Different Numbers of Developers
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Appendix E: Sample Code 
 
This section contains sample code for three important classes in the code base: 

 The Evolution Policy Interface 
 The Evolution Policy 
 The Agent 

 
The entire code base is available for download at 
http://www.benstopford.com/devsim/devsim.shtml 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Has-A 
IEvolutionPolicy 

EvolutionPolicy 
(Default Implementation) 

Agent 
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/* 
 * Created on 27-Aug-2005 
 */ 
package com.devsim.evolution; 
 
import com.devsim.code.CodeConstruct; 
import com.devsim.code.CouplingType; 
import com.devsim.code.Function; 
import com.devsim.requirements.dataobjects.Task; 
 
/** 
 * The Evolution Policy is the plug-in that determines 
 * how the code base evolves (along with the Complexity Injector). 
 * This is the fundamental place where experiments are configured. 
 * The evolution policy has access to a variety of attributes of 
 * the simulation that can be used to alter the way that the 
 * simulation evolves. 
 *  
 * In each case the evolution policy implementation must be responsible 
 * for the turning of  
 * 
 * @author Ben 
 * 
 */ 
public interface IEvolutionPolicy { 
 /** 
  * Create the code associated with the new task passed which is of  
  * requirement type NEW 
  *  
  * @param startingFunction - the function to start processing from 
  * @param task - the task to process 
  */ 
 public Cost processNewTask(Function startingFunction, Task task); 
 
 /** 
  * Augment the base function with the new task of requrement type  
  * AUGMENT 
  *  
  * @param startingFunction  - the function to start processing from 
  * @param task - the task to process 
  */ 
 public Cost processAugmentation(Function startingFunction, Task task); 
 
 /** 
  * Change code from an exising Task as specified in the new Task 
  * that is of requirement type CHANGE 
  *  
  * @param startingFunction - the function to start processing from 
  * @param newTask - the task to process 
  */ 
 public Cost processChange(Function startingFunction, Task newTask); 
 
 /** 
  * Determine the coupling type that should be used for this caller and provider 
  * @param caller 
  * @param provider 
  * @return 
  */ 
 public CouplingType getCouplingType(CodeConstruct caller, CodeConstruct provider); 
   
} 
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/* 
 * Created on Aug 12, 2005 
 */ 
package com.devsim.plugins; 
 
import com.devsim.code.Class; 
import com.devsim.code.CodeBase; 
import com.devsim.code.CodeBaseAPI; 
import com.devsim.code.CodeConstruct; 
import com.devsim.code.CouplingType; 
import com.devsim.code.Function; 
import com.devsim.code.Property; 
import com.devsim.evolution.Cost; 
import com.devsim.evolution.IEvolutionPolicy; 
import com.devsim.evolution.Memory; 
import com.devsim.requirements.dataobjects.RequirementType; 
import com.devsim.requirements.dataobjects.Task; 
import com.devsim.utils.RandomGen; 
 
/** 
 * The Evolution Policy is the plug-in that determines 
 * how the code base evolves (along with the Complexity Injector). 
 * This is the fundamental place where experiments are configured. 
 * The evolution policy has access to a variety of attributes of 
 * the simulation that can be used to alter the way that the 
 * simulation evolves. 
 * 
 * @author Benjamin Stopford 
 */ 
public class EvolutionPolicy implements IEvolutionPolicy { 
 private Memory _agentMemory; 
 
 /** 
  * Constructor with memory from agent instance that is  
  * using this evolution policy 
  * @param agentMemory 
  */ 
 EvolutionPolicy(Memory agentMemory){ 
  _agentMemory = agentMemory; 
 } 
  
 /* (non-Javadoc) 
  * @see com.devsim.evolution.IEvolutionPolicy#processNewTask(com.devsim.code.Function, 
com.devsim.requirements.dataobjects.Task) 
  */ 
 public Cost processNewTask(final Function startingFunction, final  Task task) { 
  RequirementType newReqType; 
  newReqType = task.getRequirementType(); 
  if(newReqType.isEntity() || newReqType.isDataEntity()){ 
   //New enties result in new classes being created 
   final Class c = getAPI().createClass(task, startingFunction); 
 
   //Create refeerences to the new class 
   RandomGen.performRandomTimes(new RandomGen.Repeater(){ 
    public void run() { 
    
 getAPI().createReference(startingFunction,(Function)RandomGen.getRandom(c.getFunctions())); 
    } 
   } 
   ,c.getFunctions().size()); 
  } 
  else if(newReqType.isOperation()){ 
 
   //Create average of three functions in the existing class 
   //Each new class with have a property connected to a couple of other functions in the class 
   RandomGen.performRandomTimes(new RandomGen.Repeater(){ 
    public void run() { 
     addFunctionToClassWithRefAndProp(startingFunction, task,getAPI()); 
    } 
   } 
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   ,6); 
  } 
  else{ 
   throw new RuntimeException("This should never happen!?!?!"); 
  } 
 
  return CodeMetrics.calculate(startingFunction,_agentMemory); 
 } 
 
 /* (non-Javadoc) 
  * @see com.devsim.evolution.IEvolutionPolicy#processAugmentation(com.devsim.code.Function, 
com.devsim.requirements.dataobjects.Task) 
  */ 
 public Cost processAugmentation(final Function baseFunction, final Task task){ 
 
  final Class baseClass = baseFunction.getClazz(); 
  RequirementType newReqType; 
  newReqType = task.getRequirementType(); 
  if(newReqType.isEntity() || newReqType.isDataEntity()){ 
   //Add the new entity class to the to the code base 
   final Class entityClass = getAPI().createClass(task, baseFunction); 
 
   //Create average of 1 EXTRA function to the base class 
   RandomGen.performRandomTimes(new RandomGen.Repeater(){ 
    public void run() { 
     Function f = getAPI().createFunction(task,baseClass, baseFunction); 
     getAPI().createReference(baseFunction,f); 
    } 
   } 
   ,2); 
 
   //Randomly add 0-2 references between base and enitty classes 
   RandomGen.performRandomTimes(new RandomGen.Repeater(){ 
    public void run() { 
     Function randomBaseClassFunction = 
(Function)RandomGen.getRandom(baseClass.getFunctions()); 
     Function randomEntityClassFunction = 
(Function)RandomGen.getRandom(entityClass.getFunctions()); 
    
 if(randomBaseClassFunction!=null&&randomEntityClassFunction!=null) 
     
 getAPI().createReference(randomBaseClassFunction,randomEntityClassFunction); 
    } 
   } 
   ,2); 
  } 
  else if(newReqType.isOperation()){ 
   //Create average of 1 EXTRA function to the base class 
   RandomGen.performRandomTimes(new RandomGen.Repeater(){ 
    public void run() { 
     Function f = getAPI().createFunction(task,baseClass, baseFunction); 
     getAPI().createReference(baseFunction,f); 
    } 
   } 
   ,2); 
 
   //Create 0-2 extra references from the base class to randomly selected functions 
   RandomGen.performRandomTimes(new RandomGen.Repeater(){ 
    public void run() { 
     Function f = getAPI().createFunction(task,baseClass, baseFunction); 
    
 getAPI().createReference(baseFunction,getAPI().getFunctionAtRandom()); 
    } 
   } 
   ,2); 
 
  } 
  else{ 
   throw new RuntimeException("This should never happen!?!?!"); 
  } 
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  return CodeMetrics.calculate(baseFunction,_agentMemory); 
 } 
 
 /* (non-Javadoc) 
  * @see com.devsim.evolution.IEvolutionPolicy#processChange(com.devsim.code.Function, 
com.devsim.requirements.dataobjects.Task) 
  */ 
 public Cost processChange(Function funcToExtend, Task newTask) { 
  Cost cost = new Cost(); 
   
  //add the new task to all functions that use the current one 
  funcToExtend.addTask(newTask); 
   
  //add a new function with properties linkign them back to original fucntion 
  addFunctionToClassWithRefAndProp(funcToExtend,newTask,getAPI()); 
   
  //half the time add a new ref 
  if(RandomGen.getBool()){ 
   getAPI().createReference(funcToExtend,getAPI().getFunctionAtRandom()); 
  } 
  cost.add(CodeMetrics.calculate(funcToExtend,_agentMemory)); 
 
  return cost; 
 } 
 
 /** 
  * @return Returns the _api. 
  */ 
 CodeBaseAPI getAPI() { 
  return CodeBase.getAPI(); 
 } 
 
 /** 
  * Adds a new function with a reference and 
  * properteis from the creating function 
  * @param startingFunction 
  * @param task 
  */ 
 static Function addFunctionToClassWithRefAndProp(Function startingFunction, Task task,CodeBaseAPI api) { 
  Class startingClass = startingFunction.getClazz(); 
  Function f = api.createFunction(task,startingClass, startingFunction); 
  api.createReference(startingFunction,f); 
 
  //create a property 
  Property p = api.createProperty(api.getClassAtRandom(),startingClass,task); 
  api.createReference(f,p); 
 
  //link the new property to the new function and 2 other random functions 
  Function f1 = (Function)RandomGen.getRandom(startingClass.getFunctions()); 
  Function f2 = (Function)RandomGen.getRandom(startingClass.getFunctions()); 
  api.createReference(f1,p); 
  api.createReference(f2,p); 
 
  return f; 
 } 
 
 /* (non-Javadoc) 
  * @see com.devsim.evolution.IEvolutionPolicy#getCouplingType(com.devsim.code.CodeConstruct, 
com.devsim.code.CodeConstruct) 
  */ 
 public CouplingType getCouplingType(CodeConstruct caller, CodeConstruct provider){ 
  return EnvironmentVariable.getCouplingType(caller,provider); 
 } 
   
} 
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package com.devsim.evolution; 
 
import java.util.ArrayList; 
import java.util.Iterator; 
import java.util.List; 
import java.util.logging.Logger; 
 
import com.devsim.code.Class; 
import com.devsim.code.CodeBase; 
import com.devsim.code.Event; 
import com.devsim.code.Function; 
import com.devsim.plugins.PolicyFactory; 
import com.devsim.requirements.RequirementRepository; 
import com.devsim.requirements.dataobjects.Extension; 
import com.devsim.requirements.dataobjects.Requirement; 
import com.devsim.requirements.dataobjects.Task; 
import com.devsim.utils.RandomGen; 
 
/** 
 * 
 * The agent facilitates the evolution performed by the Evolution Policy. 
 * Primarily it determines the starting class and function from the Task 
 * and mediated the appropriate executrions of the evolution policy. 
 * 
 * @author Benjamin Stopford 
 * 
 * TODO To change the template for this generated type comment go to 
 * 
 */ 
public class Agent extends AgentController { 
 private static final Logger LOGGER = Logger.getLogger("com.devsim.evolution"); 
 private Memory agentMemory = new Memory(this); 
 private final IEvolutionPolicy policy = PolicyFactory.getEvolutionPolicy(agentMemory); 
 private static int maxid; 
 private int id; 
 
 //AGENT CAN ONLY BE CONSTUCTED AT PACKAGE LEVEL (I.E. BY THE FACTORY) 
 Agent (){ 
  maxid++; 
  id = maxid; 
 } 
 
 public String toString(){ 
  return "Agent:"+id; 
 } 
 
 /* (non-Javadoc) 
  * @see 
com.devsim.evolution.EvolutionTemplate#comprehend(com.devsim.requirements.dataobjects.Requirement) 
  */ 
 protected Cost comprehend(Requirement r) { 
  //dependent on the task size, the number of existing functions, 
  //their complexity and whether the agent has seen it before. 
  return Cost.NO_COST; 
 } 
 
 /* (non-Javadoc) 
  * @see com.devsim.evolution.EvolutionTemplate#design(com.devsim.requirements.dataobjects.Requirement) 
  */ 
 protected Cost design(Requirement r) { 
  //opertunity to switch evolutoin policy based on code base 
  return Cost.NO_COST; 
 } 
 
 /* (non-Javadoc) 
  * @see 
com.devsim.evolution.EvolutionTemplate#implement(com.devsim.requirements.dataobjects.Requirement) 
  */ 
 protected Cost implement(Requirement newReq) { 
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  getApi().startCosting(this); 
  Cost totalCost = new Cost(); 
 
  List taskList = newReq.getTasks(); 
  Extension unitToExtend = newReq.getOperatesOn(); 
  RequirementRepository reqRepo = RequirementRepository.getInstance(); 
  Function startingFunction=null; 
 
  //if it is a new event then add it in a new class with a new function 
  if(unitToExtend.getRequirementType().isSystemEvent()){ 
   //startingClass = ; 
   Event ev = getApi().createEvent(unitToExtend.getTask()); 
   startingFunction = ev; 
 
  }else{ 
   //operating on an exisiting task so check it exists 
   if(!reqRepo.exists(unitToExtend.getParent())){ 
    throw new RuntimeException("The task that is being changed has not been 
coded yet. Extendion:"+unitToExtend.toString()); 
   } 
  } 
 
  if(newReq.getChangeType().isNew()){ 
 
   // New functionality may have a specified starting Task or Requirement. 
   // New functionality however is only only ever started from one class 
   // chosen at random if the task or requirement that is being extended 
   // has several to choose from. 
   if(unitToExtend.isRequirement()&&startingFunction==null){ 
    Requirement r = unitToExtend.getRequirement(); 
    Task firstTask = (Task)r.getTasks().iterator().next(); 
    //startingClass = getApi().getFirstClassForTask(firstTask); 
    startingFunction = 
(Function)RandomGen.getRandom(getApi().getFunctionsForTask(firstTask)); 
   } 
   else if(unitToExtend.isTask()&& startingFunction==null){ 
    Task t =unitToExtend.getTask(); 
    Class startingClass = getApi().getFirstClassForTask(t); 
    startingFunction = getApi().getFirstFunctionForClass(startingClass); 
   } 
   if (startingFunction==null){ 
    throw new RuntimeException("The starting function needs to have been found by 
this point."); 
   } 
   Iterator tasks = taskList.iterator(); 
   while(tasks.hasNext()){ 
    Task task = (Task)tasks.next(); 
    totalCost.add(policy.processNewTask(startingFunction, task)); 
   } 
  } 
  else if(newReq.getChangeType().isAugment()){ 
 
   Iterator tasksToAugment; 
   Iterator tasksToImplement; 
 
   // AUGMENT functionality will always be changing a Requirement. 
   if(unitToExtend.isRequirement()){ 
    Requirement reqToAugment = unitToExtend.getRequirement(); 
    if (reqToAugment==null){ 
     throw new RuntimeException("Requirement is null but needs to be 
supplied for an augmentation."); 
    } 
 
    //Augmentation operates on all the requirements 
    tasksToAugment = reqToAugment.getTasks().iterator(); 
   } 
   else{ 
    Task task = unitToExtend.getTask(); 
    if (task==null){ 
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     throw new RuntimeException("Task is null but needs to be supplied for 
an augmentation."); 
    } 
 
    //Augmentation operates on all the requirements 
    List tasksToAugmentList = new ArrayList(); 
    tasksToAugmentList.add(task); 
    tasksToAugment = tasksToAugmentList.iterator(); 
   } 
   tasksToImplement = newReq.getTasks().iterator(); 
 
   //loop through each existing task that must be augmented 
   while (tasksToAugment.hasNext()){ 
    Task taskToAugment = (Task)tasksToAugment.next(); 
    Iterator functionsToAugment = 
getApi().getFunctionsForTask(taskToAugment).iterator(); 
 
    //loop through each task that must be implemented as new functionality 
    while (tasksToImplement.hasNext()){ 
     Task taskToImplement = (Task)tasksToImplement.next(); 
     if(RandomGen.getPercentage() < 
newReq.getAugmentationPercentage()){ 
 
      //loop through each of the functions for the top level task that 
is being augmented 
      while(functionsToAugment.hasNext()){ 
       Function f = (Function)functionsToAugment.next(); 
       //proceed with augmenting the class 
      
 totalCost.add(policy.processAugmentation(f,taskToImplement)); 
      } 
     } 
    } 
   } 
  } 
  else if(newReq.getChangeType().isChange()){ 
 
   Iterator tasks = newReq.getTasks().iterator(); 
 
   while(tasks.hasNext()){ 
    Task newTask = (Task)tasks.next(); 
    //this will only be a change to a task 
    Task taskToExtend = unitToExtend.getTask(); 
    
    Iterator functions = 
CodeBase.getAPI().getFunctionsForTask(taskToExtend).iterator(); 
    Function f=null; 
    while(functions.hasNext()){ 
     f = (Function)functions.next(); 
     totalCost.add(policy.processChange(f, newTask)); 
    } 
   } 
  } 
  totalCost.add(getApi().getCost()); 
  return totalCost; 
 } 
 
 /* (non-Javadoc) 
  * @see com.devsim.evolution.EvolutionTemplate#test(com.devsim.requirements.dataobjects.Requirement) 
  */ 
 protected Cost test(Requirement r) { 
  //assume testing is proportional to the number of functions that were changed 
 
 
  return Cost.NO_COST; 
 } 
 
 /* (non-Javadoc) 
  * @see com.devsim.evolution.EvolutionTemplate#complete() 
  */ 
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 protected void complete(Requirement r) { 
 
  //all the functions created as part of the 
  //tasks implemented by this agent in this epoch 
  //are added to the agents memory 
 
  Iterator tasks = r.getTasks().iterator(); 
  while (tasks.hasNext()){ 
   Task t = (Task)tasks.next(); 
   Iterator functions = getApi().getFunctionsForTask(t).iterator(); 
   while (functions.hasNext()){ 
    Function f = (Function)functions.next(); 
    agentMemory.add(f); 
 
   } 
  } 
 } 
 
 public Memory getMemory() { 
  return agentMemory; 
 } 
} 
 


