
 1

Reflections on the paper:
“Design Pattern Implementation in Java and AspectJ ”

by J. Hannemann and G. Kiczales

Benjamin Stopford

Email: Benjamin.Stopford@BarclaysCapital.com
07968 702589

 2

Cross-Cutting and Aspects
Aspect orientated programming involves the separation of concerns within an application so that they do
not clutter or cut across one other. The Wikipedia definition [5] states:

“In computer science, cross-cutting concerns are aspects of a program, that do not relate to the core
concerns directly, but are needed for proper program execution.”

As an example let us consider a telecommunications application. This might have a core concern of
“routing calls ”, but code for other operations such as “timing” and “billing” those calls might be
intertwined in the whole “routing” object hierarchy. Here the “billing concern” overlays the “routing
concern” meaning that the code that implements each is crosscut (Fig. 1(a)). This intertwining of code for
separate concerns, know as Cross-Cutting, cannot be removed with regular programming methods.

Aspect Orientation allows the extraction of duplicated calls from multiple positions in the control flow into
single Aspect commands that are woven back in at compile time. This leaves client code free of tertiary
concerns that would otherwise cut across it (fig. 1(b)).

Patterns and Roles
Hannemann et al have observed that there are cross-cutting relationships between different roles within
many of the GoF [2] patterns. They segregate these roles into two types. Firstly “Defining Roles” are those
for which the code is completely encapsulated in the pattern itself. A good example is the Façade pattern
which has no influence on clients other than to provide an interface with which they can interact. Such roles
leverage little from an Aspect Orientated approach as their encapsulation means they rarely crosscut client
code. The second role type observed by Hannemann are “Superimposed Roles”. These generally see
improvements with the introduction of Aspects due to there being cross-cutting between the different roles
which are superimposed as in the telecommunications example above.

Cross-Cutting of between Pattern and Participant Classes

Routing Code

Routing Code

Routing Code

Routing Code

Billing Code Billing Code

Billing Code

Routing Code

Routing Code

Routing Code

Fig 1(a)
Tangled code for Billing and
Routing in the standard OO
implementation.

Fig 1(b) Aspects allow the
Billing code to be abstracted
into physically separated
Aspects.

Billing Code

Are there visible improvements in the AspectJ pattern implementations arising
from the cross-cutting nature of design patterns?

 3

The first and probably most fundamental cause of cross-cutting within the standard OO (non-Aspect)
patterns arise due to the superposition of the pattern role over the primary role of the participant class,
which is likely to be something completely unrelated.

For example the class that is participating as a subject in the Observer Pattern is likely to have other
responsibilities such as a regular programming task like “being a timer” . This class has a superimposition
of roles, the role of being a Subject in the pattern and the role of “being a timer”. Hannemanns et al refer to
this as the “Participants having their own responsibilities and justification outside the pattern context ” [7].
The manifestation of this in the regular java implementation is a plethora of notifyObservers() methods
within subject classes. Within the Aspect implementation however the code is modularised into a single
class leaving the Subject with no knowledge of its participation in the pattern at all.

Such cross-cutting concerns are also demonstrated well by the Chain of Responsibility Pattern. This pattern
allows an object to send a command without knowing what objects will receive it. The benefits due to
cross-cutting are again revealed due to the concern of the pattern being separated from the concern of the
participant classes i.e. each participant in the chain need not be aware of its role in the pattern.

The key point is that code modules for roles such as Subjects have no interest in containing code that
facilitates their behaviour in the pattern. Hence the presence of any such code for this role is of no
relevance and this crosscuts their primary role.

Hanneman et al classify this kind of cross-cutting further into two subsets :-

1. Roles that Crosscut Participant Classes: This defines the concept of different roles being
intertwined as described above. Examples are the cross-cutting of the pattern roles, such as being
a Subject in the Observer or Leaf in the Composite etc, with the base role of the participant class
such as “being a timer”.

2. Conceptual Operations Cross-Cutting Methods in one of more Classes: This refers to the
actual implementation of ‘one to many’ relationships across multiple classes which generally
result from (1). This level of cross-cutting is often modularised into a single class in the Aspect
implementations. In the Observer example this is typified by the modularisation of the scattered
refresh() calls into a single subjectChange() pointcut.

Cross-Cutting of Shared Participants between Multiple Pattern Instances
The second level of cross-cutting pointed out by Hannemann et al lies in the improvement found when
multiple patterns (or pattern instances) act upon the same subjects. For example there may be two instances
of a pattern which each treat the same class or method with different roles. This “Pattern Composition”
introduces additional cross-cutting issues.

For example considering multiple instances of the Observer pattern, certain participant classes may behave
as Observer in one pattern instance and Subject in another. This cross-cutting over shared participants can
be removed in the AspectJ implementation as each of the pattern instances access a single set of mapping
points in the programs execution via Point cuts .

Cross-Cutting and the Classification of Roles in Patterns
Aspect orientated programming is driven by the desire to split code that applies to different concerns so that
it does not crosscut the code of the core concern. This is typified by the superposition of the pattern role
and participant role in the Observer pattern. The Observer example is successful because there is a clear
argument for the roles imposed by the pattern being logically separate from the core concern of most
Subject and Observer classes. Hanneman et al describe the various roles within the GoF patterns but there
is no discussion of which concerns those roles really lie in.

The next question I will try to explore is : Are the roles observed in the patterns really in different areas of
concern to the roles of the participant classes?

To explore this let us look at the Composite pattern. Put briefly the composite pattern supplies a mechanism
through which you can compose a single object from a collection of other objects to produce a composition

 4

of behaviour. Hannemann et al present this pattern via a fictitious file system where a directory can be
composed of files and other directories. The composite component allows each ele ment to be treated in a
similar way i.e. the pattern provides the mechanism that allows files and directories to be added to other
directories etc.

The view put forward by Hannemann et al is that the pattern has two superimposed roles, the Composite
and the Leaf. Cross-Cutting of roles can occur when the role of “being a Leaf” crosscuts the role that each
class is designed to do, in this case “being a file or directory”. The problem arises that whilst this is true in
the case of the Observer pattern, in many pattern implementations the pattern is tied to the same concern as
the implementing class.

In this file/directory example it could be said that the file should not need to know about the various
methods that facilitate its behaviour and position in the file system. However another argument might be
that the position of a file in a file system is likely to be considered pertinent to the core concern of being a
file.

The Strategy pattern is another example with questionable disparity between roles simply due to the role of
the pattern being intrinsically tied to the role of the participants. Hannemann et al use a sorter as an
example which can be initialised with either a bubble or linear sort strategy. The aspect implementation
removes the setting of the strategy to an aspect so that the core code for the sorter is not crosscut by it.
However it is difficult to think of a situation where the sorter would lie in a separate concern to the sort
type. Put in a more abstracted fashion the strategy for a class may not always exists in a separate concern to
that of the class itself.

This is not to say that Hannemann et at are incorrect. They have defined roles within patterns and described
methods through which the cross-cutting between those roles and the roles of implementing classes can be
reduced.

However my opinion is that cross-cutting between patterns and participants should only be considered on
an instance by instance basis where the core concern of the implementing class is known. Only then can
you decide whether the pattern roles are truly distinct from the core concerns. Furthermore patterns, such as
the strategy pattern and others, imply a usage that connects them intrinsically to their implementation. In
such cases the modularisation of cross-cutting concerns in the AspectJ implementations would not really be
separating truly disparate roles.

In conclusion there is clear benefit in cross-cutting behaviour in some of the patterns suggested. However
for the removal of cross-cutting to be of real benefit there needs to be an orthogonal relationship between
the roles of the intertwined code streams. Roles such as the Subject in the Observer pattern are clearly
orthogonal to whatever that participant class might be. However most of the other patterns do not have the
luxury of such clear distinctions in their roles.

Hence I feel there is still an open question as to whether Hannemann et al can really claim a general cross-
cutting improvement. The very premise for Aspect development is the physical segregation of roles or
concerns within an application. Unfortunately whilst there is an almost unilateral improvement in
modularity throughout the pattern suite true cross-cutting enhancement is only confirmed in a select few.

 5

One of the overwhelming advantages of Object Orientated programming is its ability to increase
modularization. However the Object Orientated framework itself imposes limits on the level that can be
supported. Software engineers have put considerable effort into furthering this aim within the OO
environment using the available tools [3]. This has lead to the introduction of patterns that encapsulate
solutions to recurring problems in abstracted reusable forms. These patterns increase modularization by
removing code from multiple implementations and into the pattern itself. But there is a limit to how far this
approach can go.

Aspects extend this aim to allow modularization, not just at the level of program flow, but also across
different areas of concern within the application. Code can be abstracted into common aspect modules that
would otherwise cut across several application roles. We will explore the increase in modularity via the use
of Aspects in the Observer pattern.

The Observer Pattern, Implemented in Java
The Observer pattern defines a one-to-many relationship between a Subject (or subjects) and any number of
Observers. There are thus two roles; Subject and Observer. Should the subject object change, all Observers
are notified automatically. This is analogous to receiving football result texts on your mobile phone. You
are the Observer and your football team is the Subject. You wish to be notified whenever your team scores
a goal.

To initiate the process the Observer must first register for notifications. In our example you would ask your
service provider to send you updates. Whenever your team scores a goal their state changes and your
network provider would send you, and everyone else that is registered, a text that notifies you of the change
in score. This corresponds to the action of the Multicaster1 whose responsibility is to maintain the one to
many relationships between Subject and the many observers, and notify them of state changes (fig 2(a)).

Physical Differences in Observer when Implemented in Aspects
We note that it is possible to abstract the responsibilities within the Observer pattern into two parts.

1 Note that the concept of a Multicaster is common in implementations of the Observer pattern but is not
necessarily required. Hannemann et al do not use one in their Java implementation. The Multicaster is
useful for comparative purposes as it contrasts well with the Concrete Aspect in the AspectJ
Implementation.

Fig. 2(b): Observers
don’t just observe.

Multicaster

Subject

Observer

Observer

Observer

Observer

Fig. 2(a): The
Observer Pattern

Code in the “Observer Class”
for Roles other than Observing.

Multicaster

Subject

Observing Code

Observing Code

Are there visible improvements in modularity of the AspectJ pattern
implementations when compared to the corresponding design patterns
implemented in Java?

 6

(1) The Base Abstraction: The base abstraction can be considered to consist of

• The framework of the pattern.
• The requirement to have a Subject and Observer.
• The mapping between them.
• The facility to update them when they change.

(2) The Pattern Instance: The second responsibility is the physical implementation of the pattern instance
which designates those specific Subject and Observer classes involved.

Hannemann et al make use of this to split their implementation of the Observer pattern into two sections.
The abstract aspect covers the contractual obligations (i.e. necessitating the addition of specific subject and
observers) and the notification mechanism. I will denote this the “Abstract Aspect Pattern”. This “Abstract
Aspect Pattern” is then extended by a “Concrete Aspect” which defines the specific relationship between
Subject and Observers of a specific type via the pattern i.e. the specific methods to be observed and those to
be notified are defined here on a case by case basis (fig 3(b)).

Modularity Improvement within the Aspect Code.
The first modularity improvement lies within the aspect code itself where responsibilities that are generic to
the pattern can be abstracted to single, common place. This is the reason for the “Abstract Aspect Pattern”.
In the Hannemann et al implementation they abstract out the responsibility for maintaining the observers
list, notifying observers and defining the classes that take on the observing and subject roles. Thus no
matter how many Observer patterns are used between different Subject and Observers the same “Abstract
Aspect Pattern” can be used, clearly increasing the modularity and reusability of the implementation.

Modularity Improvement between Aspect and Client Code Alone.
(i) Modularity through Abstraction
The second modularity increase comes from the fact that the pattern utilises the ability of AspectJ to
represent crosscut concerns in single program units. As the “Abstract Aspect Pattern” and “Concrete
Aspect” are implemented as Aspects their source code exists separately from the physical implementations
of the Observer and Subject classes. This allows modularisation of the cross-cutting concerns within the
standard pattern so that all the distributed calls to methods like refresh() and notifyObservers() in the Java
implementation can be modularized into single aspect classes, in this case the updateObserver() and
subjectChange() calls in the Concrete Aspect. This modularization is a direct result of aspect based
operators such as pointcuts.

(ii) Modularity though Dependency Reduction
The Hannemann implementation increases modularity by further reducing dependencies within the client
code. This is done by inverting the flow of control within the pattern so that only a downward dependency

Concrete Pattern

Concrete Pattern

Fig. 3(a): The logical
relationships in the Abstract
Observer pattern remain the
same but without physical links

Fig. 3(b): inheritance relationship between
Abstract and concrete Aspects

Abstract and
Concrete
Aspects.

Subject

Observer

Observer

Observer

Observer

Abstract Aspect
Pattern. This
defines generic
properties common
to all Observer
pattern instances. Concrete Pattern:

Specifies actual
Subject – Observer
relationships for each
pattern instance

 7

from the pattern to the client remains. Put another way; the pattern has an implicit dependency on the client
code (the Subject and the Observer) but the client code has no reverse dependency back on the pattern (see
Fig 4). This has the additional benefit that it increases (un)plugability in the client code. The client has no
awareness of it’s inclusion in the pattern and hence it can be added to and removed from its role in the
pattern at will, but the operation of the pattern is the same.

Summary
We have seen that there is a clear improvement in the modularity of the AspectJ implementation of the
Observer pattern. This is represented over three levels reaping benefit through textual localisation, removal
of code from participant classes and abstraction to common aspects. From an implementation point of view
these factors allow the pattern to exist in a neutral manor, most notably, without any dependencies from the
participant classes back onto the pattern itself. Considering that the Observer pattern is used frequently for
communications around application frameworks such dependency removal is extremely useful.
‘Framework’ concerns can be completely separated from client code and this in turn facilitates a true
separation of concerns.

Regular Observer Pattern
(Multicaster)

Subject

Observer

Aspect Observer Pattern
(Concrete Aspect)

Subject

Observer

Fig 4. Demonstration of the one way (downwards) dependency between Pattern and
Subject/Observer in the AspectJ implementation. The concept of a Multicaster is used for
demonstrational purposes (not used in the java Hannemann et al example).

 8

References
[1] J. Hannemann and G. Kiczales, “Design Pattern Implementation in Java and AspectJ ”, in Proceedings
of the 17th Annual ACM conference on Object-Oriented Programming, Systems, Languages, and
Applications OOPSLA’02), pages 161-173,November 2002.
[2] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design Patterns. Elements of Reusable Object-
Oriented Software”. Addison-Wesley, Reading, MA, 1995.
[3] G. Booch, "Object-oriented development," IEEE Trans. Software Eng., vol. SE-12, pp. 211-221, Feb.
1986.
[4] http://www.cs.wm.edu/~coppit/csci435-spring2004/lectures/17-cross-cutting-concerns.pdf
[5] http://wikipedia.org/
[6] - [1] - Section 4.1.1
[7] - [1] - Section 5.1
[8] - [1] - Section 4.1.3

