
 1

Benjamin Stopford

Introduction

In 1949 when forecasting the relentless march of
science the magazine Popular Mechanics quoted:
“Computers in the future may weigh not more than
1.5 tons.” This statement seems quite humorous
when quoted in the context of today, not because it is
incorrect, but because the amount is so far fetched
by current standards.

By observing the trends of his day the author was
able to easily predict the direction of future
progression. However, he had no way of predicting
details or gauging the rate at which that progression
would advance.

Similarly, in this essay I shall examine the trends of
today, and then reflect on how they can be used to
predict the trends of the future. Sudipto Ghosh
[Ghosh02] stated that “all future software systems will
be developed from components”. I will look at this
and other opinions on the future of component
systems. Finally I will reflect on the cost efficiency of
component software in its different incarnations.

The Future of Components lies in
Reuse

Component software today is about two simple
concepts, reuse and composition. Re-use is a regular
topic of conversation between software engineers.
We often discuss the merits of abstracting a class so
that it can be packaged or wrapped, allowing
customers to utilise its functionality directly. However
in other branches of engineering you would find little
discussion on this or related topics. This is not
because reuse is specific to Software Engineering.
On the contrary, engineers are expert in selecting
and reusing appropriate components in their work. It
is the fact that reuse is so commonplace in
engineering that makes it, for them, an
uncontroversial topic.

Engineers are taught, from their very first lectures,
the art of balancing the trade-offs of different
components when selecting the most appropriate
one for the situation.

Software engineers on the other hand are generally
not so good at reuse. Software engineering is still in
a “craftsmanship” phase that leads more naturally to
rewrite rather than reuse.

The problem is that software is a soft and malleable
product that can be moulded into whatever exact
shape suits. The question then arises as to whether
this perceived advantage of the “softness of
software” is really a liability?

One argument, put forward by Ruben Prieto-Diaz
[Prieto96], is that the progression of software
engineering as a discipline can only really come
through the toughening of standards and conventions

to impose structure on the pliability of the discipline.
He believes that only when software becomes less
malleable will reuse, in the forms seen in other
engineering disciplines, become practical.

Ruben’s findings still bear much relevance to the
evolution and progression of component software
today. This issue of the softness of software is still
pertinent and, as we shall see, many future
developments are geared to restricting the directions
in which software can be stretched.

Ruben’s foresight was not only limited to the need for
increased structure and standards. He also observed
that it is complexity that promotes reuse. His principal
states that the more complex a software component
the greater the motivation for reusing it (as apposed
to rewriting from scratch). This concept points to the
inevitability of components within software
engineering thus paving the way for the future we
see today.

The Future of Components lies in
Composition

A different and slightly later view to Ruben’s was put
forward by Bennet [Benn00] who considered not only
reuse but also the aspect of composition, which is a
fundamental contributory element of component
software. He notes that over the last half-century
software processes have been dominated by
managing the complexities of the development and
deployment of increasingly sophisticated systems.

Bennett’s view is that there needs to be a shift in the
focus of software towards users rather than
developers. He states that software development
needs to be more demand-centric so as to allow it to
be delivered as a service within the framework of an
open marketplace. The concept being introduced is
known as a Service Based Approach to Software and
the analogy he uses is one of selling cars.

Historically cars were sold from pre-manufactured
stock but increasingly nowadays consumers
configure their desired car from a series of options
and only then is the final product assembled. The
comparable process in software is to allow users to
create, compose and assemble a service,
dynamically bringing together a number of different
suppliers to meet the consumer’s needs.

The issues imposed by such a proposal lie in the
complexities involved in the late binding of software
components. Bennet suggests his research will be
able to perform binding delayed until the point of
execution. This allows customers to select the
various components of their systems from a potential
variety of vendors and from these components build
the customised system of their choice, a concept
known as adaptable composition.

Compare and contrast the future of component software
discussed by various authors. What is your opinion of
component-based software in terms of cost effectiveness?

 2

These ideas of adaptable composition are extended
even further into the future by Howard Shrobe
[Shrobe99] in his paper of The Future of Software
Technology [Shrobe99]. Shrobe presents an
interesting view of the future as one composed of
self-adaptive systems that are sensitive to the
purposes and goals of the components from which
they are composed. Such systems would contain
multiple components with similar but slightly
disparate roles and the runtime would be able to
dynamically determine the most appropriate
component for a certain task.

In particular he comments on the long-standing wider
research aims to develop tools and methodologies
with make impenetrable and properly correct
systems. Shobe doubts the usefulness of such
methods in future systems. He believes that many of
the problems that require such measures arise from
the harshness and unpredictability of the
environment rather than the mental limitations of
programmers.

Instead, he suggests that a range of techniques and
tools will emerge that facilitate the construction of
inherently self-adaptive systems and goes on to
predict some of their features. These will include
multiple components being available for any single
task. The most appropriate one being selected
dynamically by the runtime environment. This is what
he calls a Dynamic Domain Architecture. Such
architectures are more introspective and reflective
that conventional systems. The key elements being:

• Monitors that will check validation
conditions are true at various points.

• Diagnosis and isolation services that will
determine the cause of exceptional
conditions.

• Services will be available that select
alternative components to use in the event
of failure.

Such systems will need to be, in some ways, self-
aware and goal directed. Shobe also foresees the
interactions between developers and the system
taking the form of a dialogue rather than coding. The
developer would offer advice to the system at certain
critical points to aid its’ judgement in how to deal with
different situations.

Are these futures realistic?

The views of both Bennet and Shrobe are fairly far
reaching. Shrobe’s in particular represents a quite
extreme vision. However all the ideas so far are
grounded in the fundamentals of how component
software (and software in general) is developed
today.

To see how such views can be considered plausible
it is useful to consider the motivations for Component
Software expressed by other prominent authors.
Clemens Szyperski, one of the fathers of Component
Software, explores the motivations for current and
future trends in component software in his paper
Component Software: What, Where and How?
[Szyp02]. Here he divides the motivations for using
software components into the four tiers summarised
below:

Tier 1: Build Time Composition
Component applications that reside in this tier use
prefabricated components in amongst custom
development. This drives balance between the

competitive advantages of purpose-built software and
the economic advantage of standard purchased
components. Most importantly components are
consumed at development time and released as part
of a single custom implementation.

Tier 2: Software Product Lines
Scaling above Tier 1 involves the reuse of partial
designs and implementation fragments across
multiple products. This is the domain of Software
Product Lines [Web1], [Bosch00]. In this tier
components are developed for reuse across multiple
products. This is similar in some ways to
conventional manufacture. An automotive
manufacturer may create a variety of unique
variations of a single car model. These would be
constructed through the use of standard components
and production systems that specialise in their
configuration and assembly into the various products.
A similar concept can be applied to component
development and assembly with developers taking
roles either as component assemblers or product
integrators.

Tier 3: Deployment Composition
In this tier components are integrated as part of the
product’s deployment (not at build time). An example
of deployment composition is the web browser, which
is deployed then subsequently updated with
downloaded components that enable specialist
functionality on certain web pages. Sun’s J2EE also
supports partial composition at deployment time
through the use of a deployment descriptor and
hence also falls into this category.

Tier 4: Dynamic Upgrade and Extension
In this final tier there are varying degrees of
redeployment and automatic installation that facilitate
a product that can grow and evolve over its lifetime.
This final tier is the realm of current and future
research.

What is notable about Szyperski’s tiers is that they
are all motivated by financial drivers. Tier1 arises
from the competitive advantage gained through
reusing prefabricated components over developing
them in house. Tier2 results from the forces of an
economy scope1 to extend reuse beyond singular
product boundaries and into orchestrated reuse
programmes.

In the third and fourth tiers Szyperski switches focus
from just reuse to aspects of composition and
dynamic upgrade. However the economic motivators
here are subtler.

In the third tier they focus on the need for
standardisation in a similar vein to that introduced
earlier by Prieto-Diaz. Deployment composition
generally relies on a framework within which the
components operate. This introduces a much-needed
discipline to the process as well as offering the
opportunity to develop components, which leverage
off the framework itself.

1 Software is subject to the forces of an economy of
scope rather than and economy of scale. Economies
of scale arise when copies of a prototype can be
mass-produced at reduced cost via the same
production assets. Such forces do not apply to
software development where the cost of producing
copies is negligible. Economies of scope arise when
production assets are reused but to produce similar
but disparate products.

 3

The fourth tier supports dynamic upgradeable and
extensible structures and represents Syperski’s view
on the future of component software. Research into
applications in this tier provides an extremely
challenging set of problems for researchers, such as
validation of correctness, robustness and efficiency.

With this fourth tier architecture Szyperski is pointing
towards a future of dynamic composition but also
notes that it is one that it will likely be hindered by the
problems of compositional correctness. Validating
dynamically composed components in a realistic
deployment environment is an extremely complex
problem simply as a result of the implementation
environment not being known at the time of
development.

This is an issue of quality assurance. Firstly there is
no reliable means to exhaustively test integrations at
the component suppliers end. Secondly there are
little in the way of component development
standards, certifications or best practices that might
help increase consumer confidence in software
components by guaranteeing the reliability of vended
components.

David Garlan [Gar95] illustrated similar issues a
decade ago in the domain of static component
assembly. Garlan noted problems with low-level
interoperability and architectural mismatch resulting
from incompatibilities between the components he
studied. Issues such as “which components hold
responsibility for execution” or “what supporting
services are required” are examples of problems
arising from discrepancies in the assumptions made
by component vendors.

Garlan listed four sets of improvements which future
developments must incorporate to overcome the
problems of interoperability and architectural
mismatch:

• Make architectural assumptions explicit.
• Construct large pieces of software using

orthogonal sub-components.
• Provide techniques for bridging mismatches
• Develop sources of architectural design

guidance.

Whilst these issues were observed when considering
static composition (i.e. within Szyperski’s first Tier)
the same issues are applicable to higher tiers too.
Approaches to remedying these issues have been
suggested on many levels. One approach is to
provide certification of components so that
consumers have some guarantee of the quality,
reliability and the assumptions made in their
construction. Voas introduced a method to determine
whether a software component can negatively affect
an utilising system [Voas97].

The same concept has been taken further at the
Software Engineering Institute (SEI) at Caregie
Mellon with a certification method known as
Predictable Assembly from Certifiable Components
or PACC [Web2]. Instead of simple black box tests
PACC allows component technology to be extended
to achieve predictable assembly using certified
components. The components are assessed though
a validation framework that measurers statistical
variations in various component parameters (such as
connectivity and execution ranges). This in turn
allows companies greater confidence in the reliability
of the components they assemble.

Szyerski also alludes to a similar conclusion:

 “Specifications need to be grounded in framework of
common understanding. At the root is a common
ontology ensuring agreed upon terminology and
domain concepts.” [Szyper02].

He suggests the solution of a specification language,
AsmL, which shares some similarities with PACC.
AsmL, which is based on the concept of Abstract
State Machines [Gure00], is a means for capturing
operational semantics at a level of abstraction that
fits in with the process being modelled. Put another
way it allows the formalisation of the operations and
interactions of the components that it describes in a
type of an overly rich interface description. This in
turn allows processes to be specified and validated
with automated test case generators thus providing
verification and correctness by construction.

AsmL has been applied on top of Microsoft’s .NET
CLR by Mike Barnet et al. [Barn03] with some
successes made in specifying and verifying
correctness of composed component systems. In
Barnet’s implementation the framework is able to
provide notification that components do not meet the
required specification (along similar lines to that
suggested by Shrobe) but is as yet unable to provide
automated support or actually pinpoint the reason for
the failure.

Keshava Reddy Kottapally [Web3] presents a near
and far future view of component software as being
influenced by the development of Architectural
Description Languages (ADL’s). These ADL’s focus
on the high level structure of the overall application
rather then implementation details and again arise
from similar concepts to those suggested by
Szyperski. Physically they provide specification of a
system in terms of components and their
interconnections i.e. they describe what a component
needs rather than what it requires.

Kottapally’s near future view revolves around
adaptation of the currently prominent component
architectures (.NET, J2EE, CORBA) to incorporate
ADL’s. He gives the example that ADL files would be
built with Builder tools designed specifically for ADL
specification. Then interfaces such as CORBA IDL
could be generated automatically once the ADL file is
in place. The purpose being to facilitate connection
orientated implementations where the connections
can handle different data representations. This would
be enabled via bridges between interoperability
standards (e.g. a CORBA EJB Bridge).

He also suggests a unified move to the new
challenges proposed by COTS based development.
COTS-Based Systems focus on improving the
technologies and practices used for assembling
prefabricated components into large software
systems [COTS04], [Voas98]. This approach
attempts to realign the focus of software engineering
from the traditional linear process of system
specification and construction to one that considers
the system contexts such as requirements, cost,
schedule, operating and support environments
simultaneously.

Kottapally continues to present a more far-reaching
view on the future of CBSD. In particular he
highlights several developments he feels are likely to
become important:

• The removal of static interfaces to be
replaced by architectural frameworks that
deal with name resolution via connectors.

 4

• Resolution of versioning issues.
• General take up of COTS.
• Traditional SE transforms to CBSD.
• Software agents will represent human

beings acquiring intelligence and travelling
in the global network using component
frameworks and distributed object
technologies.

Components are Better as Families

So far we have seen evidence that the future of
component software is likely to be grounded in the
issues that facilitate both the static and dynamic
composition within software products. We have also
seen that some efforts have already been made to
increase the rigidity of the environments in which
these products operate thus allowing compositions to
become more reliable. However there is another set
of views on how we achieve these truly composable
systems that originate from a slightly different tack.

Greenfield et al [SoftFact] foresee a more systematic
approach to reuse arising from the integration of
several critical innovations to produce a process akin
to the industrialisations observed in other industries.
This goes somewhat beyond the realm of
Component Software and considers issues such as
the development of domain specific languages and
tools to reduce the amount of handwritten code.
However they do express several interesting opinions
on the application of component software in their
vision of the future.

Greenfield et al make two statements in particular
that encapsulate what they feel to be the most critical
developments in component software:

1. “Building families of similar but distinct
software products to enable a more
systematic approach to reuse”.

2. “Assembling self-describing service
components using new encapsulation,
packaging, and orchestration
technologies”.

The first point refers to the systematic approaches,
such as Software Product lines that were introduced
earlier. Studies have shown [Clem01] that the
applications of Software Product Line principals allow
levels of reuse in excess of two thirds of the total
utilised source (a level that would be difficult to
achieve through regular component assembly
methods).

Greenfield puts forward the view that the
environment of software development will be
fundamentally changed by the introduction of such
high levels of reuse. This in turn will induce the arrival
of software supply chains.

Supply chains are a chain of states with raw
materials at one end and a finished product at the
other. The intermediate steps involve participants
combining products from upstream suppliers, adding
value then passing them on down the chain.
Greenfield claims that the introduction of supply
chains will act as a force to standardise. Something
observed as a necessity by most authors on the
subject of software component evolution.

Greenfield’s second point, listed above, refers to the
concept of Self-Description. Self-Description allows
components to describe the assumptions,
dependencies and behaviour that are intrinsic to their

execution, thus providing operational as well as
contractual data. This level of meta-data will allow a
developer or even a system itself to reason about the
interactions between components.

This idea is extended further via the extension of
modelling languages, such as UML, to a level that
allows them to describe development rather than just
providing documentation of the development
process. In such a vision the modelling language
forms an integral part of the deployment.

There are similarities here to the concept of AsmL
put forward by Szyerski earlier. In addition
Greenfield, like Szyerski, also emphasises the need
for executing platforms to proceed to higher levels of
abstraction:

“Together these lead to the prospect of an
architecturally-driven approach to model-driven
development of product families”. ([SoftFact] p452)

It is also interesting to note that the concept of self-
description follows on logically from the points Garlan
made earlier regarding architectural assumptions
being explicit and the bridging of architectural
mismatches.

So what of the future?

Components are primarily designed for composition.
One of the main attractions of any component-based
solution is the ability to compose and recompose the
solution using products from potentially different
vendors. We have seen examples of issues with
static composition raised over a decade ago [Gar95]
and the same issues are pointed out time and time
again ([Szyp02], [GSCK04], [Voas97], [Web3],
[SzypCS]). We have seen solutions suggested
including self-description and ADL’s. However one of
the main aims is to produce agile software
constructions and this includes the ability to compose
systems dynamically, even at runtime.

Whether these visions actually come into being is
difficult to say. It is certainly true that the interactions
in these structures are increasingly complex and that
already there are observable tradeoffs to be made by
developers with respect to performance versus
compositional variance (as highlighted currently with
frameworks such as Suns J2EE). In the next section
we will consider the financial implications of
component technologies and attempt to determine
whether they actually provide practical cost benefits
for consumers both now and in the future.

Are Component Technologies Cost
Effective?

Szyperski’s four motivational tiers that were
introduced earlier coupled with the fact that each
increasing tier requires more refined competencies
leads to the concept of a Component Maturity Model
[Szyp02]. The levels are distinguished as:

1. Maintainability: Modular Solutions.
2. Internal Reuse: product lines.
3a. Closed Composition: make and buy from a

closed pool of organisations
3b. Open Composition: make and buy from

open markets
4. Dynamic Upgrade
5. Open and Dynamic

 5

To consider the cost effectiveness of component
software it is convenient to consider the financial
drivers within each of these levels.

Level 1. Maintainability: Modular Solutions.
At this level components are produced in house and
reused within a project. The aim from an economic
standpoint is to reduce costs by promoting reuse.
From a development position the “rule of thumb” is
that a component becomes cost effective once it has
been reused three times [SzypCS]. This property
emerges from the trade off between the cost of
redeveloping a component when it is needed against
the increased initial cost of an encapsulated and
reusable solution. This relationship is shown in fig 1.

Economic returns are generally increased further
when maintenance costs are also considered due to
the lower maintenance burden of a single (if slightly
larger) source object.

Level 2. Internal Reuse: Product Lines
Internal reuse in the form of product lines, as
introduced earlier, involves reusing internally
developed components across a range of similar
products within a product line. The economic impact
is multifaceted. Product lines increase efficiency as
they dramatically increase the level of component
reuse that can be sustained in a development cycle.
However these rewards reaped from the cross asset
utilisation of shared components must be offset
against the increased managerial and logistical
stresses imposed by such an interdependent
undertaking.

Level 3a/b. Closed Composition: Make and buy
from a closed/open market of organisations
We have seen that there is significant evidence to
suggest economic advantage from the use of
modular development. The economic advantages of
reuse in an OO sense are compulsive and this fact
alone was a major factor in the success of the object-
orientated revolution of the end of the last century.
However it is when this concept is extended to reuse
across company boundaries that the economic
benefits become really interesting.

Component reuse offers the potential for dramatic
savings in development costs if executed
successfully. Never before has the concept of non-
linear productivity been on offer to software
organisations. Quoting Szyperski [SzypCS]:

“As long as solutions to problems are created from
scratch [i.e. regular development], growth can be at
most linear. As components act as multipliers in a
market, growth can become exponential. In other
words, a product that utilises components benefits
from the combined productivity and innovation of all
component vendors”.

The use of prefabricated components offers the
potential to compose hugely complex software
constructions at a fraction of their development cost
simply by purchasing the constituent parts and
assembling them to form the desired product. It is
this promise of instant competitive advantage, which
makes the use of components so compulsive, and it
is this that makes them truly cost effective.

In fact the dynamics of a software market
fundamentally changes when components are
introduced. When a certain domain becomes large
enough to support a component market of sufficient
size, quality and liquidity the creation of that market
becomes inevitable. The adoption of components by
software developers then becomes a necessity.
Standard solutions are forced to utilise these
components in order to keep up with competitors. At
this point competitive advantage can then only be
achieved by adding additional functionality to that
offered by the composition of available components
within the software market.

The important balance to consider is one between
the flexibility, nimbleness and competitive edge
provided by regular programming and the cost
efficiencies provided by reusing prefabricated
components. This relationship is shown in fig 2.

Cost

Reuse

Fig 1. Graph of cost vs. reuse for
component and regular
development. The intersection of
the two lines occurs
approximately on the third reuse.

Regular Development

Component Development

 6

This concept of development by assembly was in fact
one of the important changes promulgated by the
industrial resolution. The advent of assembly lines
marked the transition from craftsmanship to
industrialisation. The analogy is useful when
considering software development to also be in a
period of craftsmanship and hence inferring that
taking the same steps will bring industrialisation to
the software industry. However a number of subtle
differences have manifested themselves that have
resulted in little of the predicted revolution in
component utilisation actually taking place.

This slowness in take up can be attributed to a
number of factors:

1. Lack of liquidity in component markets:
Many markets lack liquidity or companies
fail to address the difficult marketing issues
provided by an immature market such as
component software.

2. Integration issues such as platform specific
protocols.

3. Lack of transparency in component
solutions and weak packaging. Black box
solutions often hide true implementation
details and documentation can be weak.

4. Reliability issues. Black/Glass box
solutions can prove problematic for
customers as minor inaccuracies in
product specification can prove challenging
or impossible to fix. Raising issues back to
the vendor is rarely a practical solution.

5. The “not invented here” syndrome.
Suspicion of vendor components leads to
the dominance of in-house construction. In
addition components that are used are
often only applied in opportunistic manners
rather than as an integrated part of the
design.

Points 3, 4 and 5 represent the major differences
between closed pool and open market acquisition.
The closed pool allows companies greater
confidence in the component manufacture through
the building of a mutually beneficial relationship
between client and vendor. However the reduction in
breadth of components available restricts the
opportunity for full leverage from the component
market at large.

Level 4+5. Open and Dynamic Upgrade
The efficiency of dynamic upgrade is easy to judge
as what technology is currently implelmentable is of
too unreliable a form to be efficient. However future
applications of dynamic upgrade are likely to appear
in performance orientated environments that can
reap large benefits from the extra flexibility offered.

Applications such as mobile phone routing are
potential candidates where the opportunity to
dynamically switch in and out encapsulated
components in a hot system is highly valued due to
the avoidance of down time.

Conclusions

So is component software cost efficient? The answer
to this question, as with many, lies in the context in
which it is asked. The efficiency of component
software varies according the maturity level at which
it is applied. At lower levels economic benefits arise
from reuse as part of the development process. This
has a significant if not exceptional effect on
efficiency.

As utilisation moves to a level that consumes vendor
components, the potential for economic advantage
increases dramatically. Companies at this maturity
level can achieve exponential product growth. Hence,
in answer to the question posed, component software
provides the possibility for substantial increases in
cost efficiency. But this potential is, as yet, unrealised
in most software markets. This lack of take up of
component software can be traced to two specific
and interdependent aspects:

On one side is the ideology of software engineering
itself. Software engineers are brought up to develop
software rather than assemble components. It is only
natural that they should favour the comforts of an
environment they are familiar with over the
foreboding challenges imposed by the world of
assembly.

On the other hand there are significant problems with
the components of today resulting from issues of
their implementation in general, which makes them
hard to use.

As we look to the future, and component markets
mature, it is likely that the issues of integration
highlighted earlier in the paper will be resolved. This
in turn should induce closer relationships between
customers and suppliers, strengthening the process
as well as increasing confidence in assembly as a
practical and reliable methodology for industrial
application construction.

But the future is a hard thing to predict. Computers
do in fact weigh less than one and a half tons and
similarly the future probably will consist of software
components. But the fact that computers can now
weigh less than one and a half pounds demonstrates
that possibly the only way to find out what is really
going to happen is to just wait and see.

% bought

Fig 2. Spectrum between
make-all and buy-all

Taken from [SzypCS]

Flexibility, nimbleness,
competitive edge.

Cost Efficiency

 7

References

[Barn03] Barnet et al: Serious Specification for Composing Components 6th ICSE Workshop on Component-Based
Software Engineering

[Benn00] Service-based software: the future for flexible software, K. Bennett, P. Layzell, D. Budgen, P. Brereton, L.
Macaulay, M. Munro: Seventh Asia-Pacific Software Engineering Conference (APSEC'00)

[Bosch00] j. Bosch: Design and use of software architectures: Adopting and evolving a product line approach.
Addison Wisley 2000

[Clem01] Software Product Lines: Practices and Patterns: Clements and Northrop

[COTS04] http://www.sei.cmu.edu/cbs/overview.html

[Gar95] David Garlan: Architectural Mismatch of Why it’s hard to build a system out of existing parts.

[Ghosh02] "Improving Current Component Development Techniques for Successful Component-Based Software
Development," S. Ghosh. 7th International Conference on Software Reuse Workshop on Component-based Software
Development Processes, Austin, April 16, 2002.

[GSCK04] Software Factories: Greenfield, Short, Cook and Kent. Wiley 2004

[Gure00] Y. Gurevich: Sequential Abstract State Machines Capture Sequential Algorithms: ACM Transactions on
Computational Logic.

[Pour98] Gilda Pour: Moving Toward Component-Based Software Development Approach 1998 Technology of
Object-Oriented Languages and Systems

[Prieto96] Ruben Prieto-Diaz: Reuse as a New Paradigm for Software Development. Proceeding of the International
Workshop on Systematic Reuse. Liverpool 1996.

[Shrobe99] Howard Shrobe, MIT AI Laboratory, Software Technology of the Future 1999 IEEE Symposium on
Security and Privacy

[Szyp02] Clemens Szyperski: Component Technology – What, Where and How?

[SzypCS] Clemens Szyperski: Component Software – Beyond Object-Orientated Programming. Second Edition
Addison-Wesley

[Voas97] Jeffrey Voas: An approach to certifying off-the-shelf software components 1997

[Voas98] Jeffery Voas: The Challenges of Using COTS Software in Component-Based Development (Computer
Magasine)

[Web1] http://www.softwareproductlines.com/

[Web2] http://www.sei.cmu.edu/pacc

[Web3] Keshava Reddy Kottapally: ComponentReport1:
http://www.cs.nmsu.edu/~kkottapa/cs579/ComponentReport1.html

