
 1

Are Software Metrics Really Any Use?

Benjamin Stopford

Introduction
The famous British physicist Lord Kelvin (1824-
1904) once commented:

"When you can measure what you are speaking
about, and express it in numbers, you know
something about it; but when you cannot
measure it, when you cannot express it in
numbers, your knowledge is of a meagre and
unsatisfactory kind. It may be the beginning of
knowledge, but you have scarcely, in your
thoughts, advanced to the stage of science."

This statement, when applied to software
engineering, reflects harshly upon the software
engineer that believes themselves to really be a
computer scientist. The fundamentals of any
science lie in its ability to prove or refute theory
through observation. Software engineering is no
exception to this yet, to date, we have failed to
provide satisfactory empirical evaluations of
many of the theories we hold as truths.

I take the view that comprehensibility should be
the main driver behind software design, other
than satisfying business and functional
requirements, and that the route to this goal lies
in minimization of code complexity. Software
comprehension is an activity performed early in
the software development lifecycle and
throughout the lifetime of the product and hence
it should be monitored and improved during all
phases. In this paper I will reflect specifically on
methods through which software metrics can aid
the software development lifecycle through their
ability to measure, and allow us to reason about,
software complexity.

Kelvin says that if you cannot measure
something then your knowledge is of an
unsatisfactory kind. What he is most likely
alluding to in this statement is that any
understanding that is based on theory but lacks
qualitative support is inherently subjective. This is
a problem prevalent within our field. Software
Engineering contains a plethora of self-appointed
experts promoting their own, often
unsubstantiated, views. Any scientific discipline
requires an infrastructure that can prove or refute
such claims in an objective manner. Metrics lie at
the essence of observation within computer
science and are therefore pivotal in this aim.

In the conclusion to this paper I reflect on the
proposition that metrics are more than just a way
of optimizing system construction, they provide

the means for measuring, reasoning about and
validating a whole science.

Measuring Software
Software measurement since its conception in
the late 1960’s has striven to provide measures
on which engineers may develop the subject of
Software Engineering. One of the earliest papers
on software metrics was published by Akiyama in
1971 [8].

Akiyama attempted to use metrics for software
quality prediction through a crude regression
based model that measured module defect
density (number of defects per thousand lines of
code). In doing this he was one of the first to
attempt the extraction of an objective measure of
software quality through the analysis of
observables of the system. To date defect counts
form one of the fundamental measurem ents of a
software system (although a general distinction
between pre and post release defects is usually
made).

In the following years there was an explosion of
interest in software metrics as a means for
measuring software from a scientific standpoint.
Developments such as Function Point measures
pioneered in 1979 by Albrecht [17] are a good
example. The new field of software complexity
also gained a lot of interest, largely pioneered by
Halstead and McCabe.

Halstead proposed a series of metrics based on
studies of human performance during
programming tasks [11]. They represent
composite, statistical measures of software
complexity using basic features such as number
of operands and operators. Halstead performed
experiments on programmers that measured their
comprehension of various code modules. He
validated his metrics based on their performance.

McCabe presented a measure of the number of
linearly independent circuits through the program
[10]. This measure aims specifically to gauge the
complexity within the software resulting from the
number of distinct routes through a program.

The advent of Object Orientation in the 1990’s
saw a resurgence of interest as researches
attempted to measure and understand the issues
of this new programming paradigm. This was
most notably pioneered by Chidamber and
Kemerer [2] who wrapped the basic principals of
Object Orientated software construction in a suite

 2

of metrics that aim to measure the different
dimensions of software.

This metrics suite was investigated further by
Basili and Briand [25] who provided empirical
data that supported their applicability as
measures of software quality. In particular they
note that the metrics proposed [2] are largely
complementary (see later section on metrics
suites).

These metrics not only facilitate the
measurement of Object Orientated systems but
also lead to the development of a conceptual
understanding of how these systems act. This is
particularly notable with metrics like Cohesion
and Coupling which a wider audience now
considers as basic design concepts rather than
just software metrics. However questions have
been raised over their correctness from a
measurement theory perspective [26,27,30] and
as a result optimizations have been suggested
[31☺].

A second complimentary set of OO metrics was
proposed by Abreu in 1995 [32]. This suite,
denoted the Mood Metrics Set, encompasses
similar concepts to Chidamber and Kemerer but
from a slightly different, more system wide,
viewpoint on the system.

To date there are over 200+ documented
software metrics designed to measure and
assess different aspects of a software system.
Fenton [12] states that the rationale of almost all
individual metrics for measuring software has
been motivated by one of the two activities: -

1. The desire to assess or predict the
effort/cost of development processes.

2. The desire to assess or predict quality of
software products.

When considering the development of proper
systems, systems that are fit for purpose, the
quality aspects in Fenton’s second criteria, in my
opinion, outweigh those of cost or effort
prediction. Software quality is a multivariate
quantity and its assessment cannot be made by
any single metric [12]. However one concept that
undoubtedly contributes to software quality is the
notion of System Complexity. Code complexity
and its ensuing impact on comprehensibility are
paramount to software development due to its
iterative nature. The software development
process is cyclical with code often being revisited
frequently for maintenance and extension. There
is therefore a clear relationship between the
costs of these cycles and the complexity and
comprehensibility of the code.

There are a number of attributes that drive the

complexity of a system. In Software Development
these include system design, functional content
and clarity. To determine whether metrics can
help us improve the systems that we build we
must look more closely at Software Complexity
and what metrics can or cannot tell us about its
underlying nature.

Software complexity
The term “Complexity” is used frequently within
software engineering but often when alluding to
quite disparate concepts. Software complexity is
defined in IEEE Standard 729-1983 as: -

"The degree of complication of a system or
system component, determined by such factors
as the number and intricacy of interfaces, the
number and intricacy of conditional branches, the
degree of nesting, the types of data structures,
and other system characteristics."

This definition has widely been recognized as a
good start but lacking in a few respects. In
particular it takes no account of the psychological
factors associated with the comprehension of
physical constructs.

Most software engineers have a feeling for what
makes software complex. This tends to arise
from conglomerate of different concepts such as
coupling, cohesion, comprehensibility and
personal preferences. Dr. Kevin Englehart [19]
divides the subject into three sections: -

• Logical Complexity e.g. McCabes

Complexity Metric
• Structural Complexity e.g. Coupling,

Cohesion etc..
• Psychological/Cognitive/Contextual

Complexity e.g. comments, complexity of
control flow.

Examples of logical and structural metrics were
discussed in the previous section.
Psychological/Cognitive metrics have been more
of a recent phenomenon driven by the
recognition that many problems in software
development and maintenance stem from issues
of software comprehension. They tend to take the
form of analysis techniques that facilitate
improvement of comprehension rather than
actual physical measures.

The Kinds of Lines of Code metric proposed in
[28] attempts a measure cognitive complexity
through the categorization of code
comprehension at its lowest level. Analysis with
this metrics gives a measure of the relative
difficulty associated with comprehending a code
module. This idea was developed further by
Rilling et al [33] with a metric called Identifier

 3

Density. This metric was then combined with
static and dynamic program slicing to provide a
complementary method for code inspection.

Consideration of the more objective, logical and
structural aspects of complexity is still a hugely
challenging task, due to the number of factors
that contribute to the overall complexity of a
software system. In this paper I consider
complexity to comprise all three of the aspects
listed above but note that there is a base level
associated with any application at any point in
time. The complexity level can be optimized to
refractor sections that are redundant or
accidentally complex but a certain level of
functional content will always have a
corresponding base level of complexity.

Within research there has been, for some, a
desire to identify a single metric that
encapsulates software complexity. Such a
consolidated view would indeed be hugely
beneficial, but many researchers feel that such a
solution is unlikely to be forthcoming due to the
overwhelming number of, as yet undefined,
variables involved. There are existing metrics that
measure certain dimensions of software
complexity but they do so often only under limited
conditions and there are almost always
exceptions to each. The complex relationships
between the dimensions, and the lack of
conceptual understanding of them, adds
additional complication. George Statks illus trates
this point well when he likens Software
Complexity to the study of the weather.

"Everyone knows that today's weather is better or
worse than yesterdays. However, if an observer
were pressed to quantify the weather the
questioner would receive a list of atmospheric
observations such as temperature, wind speed,
cloud cover, precipitation: in short metrics. It is
anyone's guess as to how best to build a single
index of weather from these metrics."

So the question then follows: If we want to
measure and analyze complexity but cannot find
direct methods of doing so, what alternative
approaches are likely to be most fruitful for
fulfilling this objective?

To answer this question we must fist delve
deeper into the different means by which
complex systems can be analyzed.

Approaches to Understanding Complex
Systems
There are a variety of methods for gathering
understanding about complex systems that are
employed in different scientific fields. In the
physical sciences systems are usually analyzed

by breaking them into their elemental constituent
parts. This powerful approach, known as
Reductionism, attempts to understand each level
in terms on the next lower level in a deterministic
manner.

However such approaches become difficult as
the dimensionality of the problem increases.
Increased dimensionality promotes dynamics that
are dominated by non-linear interactions that can
make overall behaviour appear random [20].

Management science and economics are familiar
with problems of a complex, dynamic, non-linear
and adaptive nature. Analysis in these fields
tends to take an alternative approach in which
rule sets are derived that describes particular
behavioural aspects of the system under
analysis. This method, known as Generalization,
involves modelling trends from an observational
perspective rather than a Reductional one.

Which approach should be taken, Reductionism
or Generalization, is decided by whether the
problem under consideration is deterministic.
Determinism implies that the output is uniquely
determined by the input. Thus a prerequisite for a
deterministic approach is that all inputs can be
quantified directly and that all outputs can be
objectively measured.

The main problem in measuring the complexity of
software through deterministic approaches
comes from difficulty in quantifying inputs due to
the sheer dimensionality of the system under
analysis.

As a final complication, software construction is a
product of human endeavour and as such
contains sociological dependencies that prevent
truly objective measurement.

Using metrics to create multivariate models
To measure the width of this page you might use
a tape measure. The tape measure might read
0.2m and this would give you an objective
statement which you could use to determine
whether it might fit it in a certain envelope. In
addition the measurement gives you a
conceptual understanding of the page size.
Determining whether it is going to rain is a little
trickier. Barometric pressure will give you an
indicator with which you make an educated
guess but it will not provide a precise measure.
Moreover it is difficult to link the concept of
pressure with it raining. This is because the
relationship between the two is not defining.

What is really happening of course is that
pressure is one of the many variables that
together contribute to rainfall. Thus any model

 4

that predicts weather will be flawed if other
variables, such as temperature, wind speed or
ground topologies are ignored.

The analysis of Software Complexity is
comparable to this pressure analogy in that there
is disparity between the attributes that we can
currently measure, the concepts that are involved
and the questions we wish answered. The
relationships between multiple metrics and the,
often more encompassing underlying physical
attributes are shown in fig 2.

Fig (2): Demonstrates the measurement process
of a metrics tool and how it samples from
complexity domains.

Multivariate models attempt to combine as many
metrics as are available in a way that maximizes
the dimension coverage within the model. They
also can examine the dependencies between
variables. Complex systems are characterized by
the complex interactions between these
variables. A good example is the duel pendulum
which, although being only comprised of two
single pendulums, quickly falls into a chaotic
pattern of motion. Various multivariate techniques
are documented that tackle such interdependent
relationships within software measurement. They
can be broadly split into two categories:
1. The first approach notes that it is the

dependencies between metrics that form the
basis for complexity. Thus examination of
these relationships provides analysis that is
deeper than that created with singular
metrics as it describes the relationship
between metrics. Halstead's theory of
software science [2] is probably the best-
known and most thoroughly studied example
of this.

2. The second set is more pragmatic about the
issue. They accept that there is a limit to
what we can measure in terms of physical
metrics and they suggest methods by which
those metrics available can be combined in a
way that maximizes benefit. Fenton’s
Bayesian Nets [4] are a good example of this
although their motivation is more heavily
focused on the prediction of software cost
than the evaluation of its quality.

Metrics suites
One of the popular methods for dealing with the
multi dimensionality of complexity is by
associating different metrics within a metrics
suite. Methods such those discussed in [13], [14]
follow this approach. The concept is to select
metrics that are complementary and together
give a more accurate overview of the systems
complexity that each individual metric would
alone.

Regression Based and stochastic models
The idea of combining metrics can be extended
further with regression-based models. These
models use statistical techniques such as factor
analysis over a set of metrics to identify a small
number of unobservable facets that give rise to
complexity.

Such models have had some success. In 1992
Borcklehurst and Littlewood [21] demonstrated
that a stochastic reliability growth model could
produce accurate predictions of the reliability of a
software system providing that a reasonable
amount of failure data can be collected.

Models like that produced by Stark and Lacovara
[15] use factor analysis with standard metrics as
observables. The drawback of these methods is
that the resulting models can be difficult to
interpret due to their “black box” analysis
methodologies. Put another way; the methods by
which they analyze cannot be attributed to a
causal relationship and hence their interpretation
is more difficult.

Halstead [23] presented a statistical approach
that looks at total number of operators and
operands. The foundation of this measure is
rooted in information theory - Zipf's laws of
natural languages, and Shannon's information
theory. Good agreement has been found
between analytic predictions using Halstead's
model and experimental results. However, it
ignores the issues of variable names, comments,

Observation Model/tool

Metric

Metric

Metric

Software Complexity

Goals

View

Measurement Domains

 5

choice of algorithms or data structures. It also
ignores the general issues of portability, flexibility
and efficiency.

Causal Models
Fenton [12] suggests an alternative that a uses a
causal structure of software development which
makes the results much easier to interpret. His
proposal utilizes Bayesian Belief Networks.
These allow those metrics that are available
within a project to be combined in a probabilistic
network that maps the causal relationships within
the system.

These Bayesian Belief Nets also have the added
benefit that they include estimates of the
uncertainly of each measurement. Any analytical
technique that attempts to provide approximate
analysis must also provide information on the
accuracy of the results and this is a strong benefit
with this technique.

Successes and Failures in Software
Measurement
In spite of the advances in measurement
presented by the various methods discussed
above there are still problems evident in the field.
The disparity between research into new
measurement methods and their uptake in
industrial applications highlight these problems.

There are 30+ years of research into software
metrics and far in excess of 200 different
software metrics available yet these have barely
penetrated the mainstream software industry.
What has been taken up also tends to be based
on the many of the older metrics such as Lines of
code, Cyclometric Complexity and Function
points which where all developed in or before the
1970’s.

The problem is that prospective users tend to
prefer the simpler, more intuitive metrics such as
lines of code as they involve none of the
rigmarole of the more esoteric measures [12].
Many metrics and consolidation processes lack
strong empirical backing or theoretical
frameworks. This leaves users with few
compelling motivations for adopting them. As a
result these new metrics rarely appear any more
reliable than their predecessors and are often
difficult to digest. These factors have contributed
to their lack of popularity.

However metrics implemented in industry are
often motivated by different drivers to those of
academia. Their utilization is often motivated by a
desire to increase certification levels (such as
CMM [22]). They are sometimes seen as
something used as a last resort for projects that

are failing to hit quality or cost targets. This is
quite different from the academic aim of
producing software of better quality or rendering
more effective management.

So can metrics help us build better systems?
Time and cost being equal and business drivers
aside, the goal of any designer is to make their
system easy to understand, alter and extend. By
maximizing comprehensibility and ease of
extension the designer ensures that the major
burden in any software project, the maintenance
and extension phases are reduced as much as
possible.

In a perfect word this would be easy to achieve.
You would simply take your “complexity ruler”
and measure the complexity of your system. If it
was too complex you might spend some time
improving the design.

However, as I have shown, there is no easily
achievable "complexity ruler". As we have seen
software complexity extends into far more
dimensions that we can currently model with
theory, not to mention accurately measure.

But nonetheless, the metrics we have discussed
give useful indicators for software complexity and
as such are a valuable tool within the
development and refactoring process. Like the
barometer example they give an indicator of the
state of the system.

Their shortcomings arise from the fact that they
must be used retrospectively when determining
software quality. This fact arises as metrics can
only provide information after the code has been
physically put in place. This is of use if you are a
manager in a large team trying to gauge the
quality of the software coming from the many
developers you may oversee. It is less useful
when you are trying to prevent the onset of
excessive or accidental complexity when
designing a system from scratch. Reducing
complexity through refactoring retrospectively is
known to be far more expensive that a pre-
emptive design. Thus a pre-emptive measure of
software complexity that could be integrated at
design time would be far more attractive.

So my conclusion must be that current
complexity metrics provide a useful, if somewhat
limited, tool for analysis of the system attributes
but are, as yet, not really applicable to earlier
phases of the development process.

The role of Metrics in the Validation of
Software Engineering
There is another view, that the success of metrics
for aiding the construction of proper software lies

 6

not in their ability to measure software entities
specifically. Instead it is to provide a facility that
lets us reason objectively about the process of
software development. Metrics provide a unique
facility through which we can observe software.
This in turn allows us to validate the various
processes. Possibly the best method for reducing
complexity from the start of a project lies not in
measurement of the project itself but in the use of
metrics to validate the designs that we wish to
employ.

Through the history of metrics development there
has been a constant oscillation between the
development of understanding of the software
environment and its measurement. There are few
better examples of this than the measurement of
object orientated methods where the research by
figures like Chidamber, Kemerer, Basili, Abreu
and Briand lead not only to the development of
new means of measurement but to new
unders tanding of the concepts that drive these
systems.

Fred S Roberts said, in a similar vein to the quote
that I opened with:

“A major difference between a “well developed”
science such as physics and some other less
“well developed” sciences such as psychology or
sociology is the degree to which they are
measured.”

Software metrics provide one of the few tools
available that allow the measurement of software.
The ability to observer and measure something
allows you to reason about it. It allows you to
make conjectures that can be proven. In doing so
something of substance is added to the field of
research and that knowledge in turn can provide
the basis for future theories and conjectures. This
is the process of scientific development.

So as a final response to the question posed,
software metrics have application within
development but I feel that their real benefit lies
not in the measurement of software but in the
validation of engineering concepts. Only by
substantiating the theories that we employ within
software development can we attain a level of
scientific maturity that facilitates true
understanding.

 7

References

[1] Startk and Lacovara; On the calculation of relative complexity measurement.
[2] S. R. Chidamber , C. F. Kemerer : A Metrics Suite for Object Oriented Design
[3] The Goal Question Metric Approach: V. Basili, G Caldiera, H Rombach
[4] Fenton NE, Software Metrics, A Rigorous Approach, 1991
[5[Briand, Morasca, Basili: Property-Based software engineering measurement, IEEE Transactions on Software
Engineering 1996.
[6] Zuse H: Software Complexity, Measures and Methods 1991
[7] Bache, Neil: Introducing metrics into industry: a perspective on GQM, 1995
[8] Akiyama F: An example of software system debugging 1971
[9] History of Software Measurement by Horst Zuse (<http://irb.cs.tu-berlin.de/~zuse/metrics/History_02.html>)
[10] T McCabe: A Complexity Measure, IEEE Transactions in Soft Engineering Dec 1976
[11] M.H. Halstead: On Software Physics and GM’s PL.I Programs, General Motors Publications 1976
[12] Fenton NE, Software Metrics, A Roadmap, 1991
[13] Nagapan, Williams, Vouk, Osborne: Using In Process Testing Metrics to Estimate Software Reliability.
[14] Valerdi, Chen, and Yang: System Level Metircs for Software development
[15] G. Stark, L Robert on the Calculation of Relative Complexity Measurement
[16] Fenton NE, A critique of software defect prediction models 1999
[17] Albrecht: Measuring application development 1979
[18] David Garland - Why it is hard to build systems out of existing parts.
[19] CMPE 3213 - Advanced Software Engineering (http://www.ee.unb.ca/kengleha/courses/CMPE3213/Complexity.htm)
[20] Ben Goertzel - The Faces of Psychological Complexity
[21] Littlewood B, Brocklehurst S, "New ways to get accurate reliability measures", IEEE Software, vol. 9(4), pp. 34-42,
1992.
[22] Capability Maturity Model for Software - <http://www.sei.cmu.edu/cmm/>
[23] Halstead, M., Elements of Software Science, North Holland, 1977.
[24] Klemola, Rilling: CA Cognitive Complexity Metric Based On Category Learning
[25] Victor R. Basili, Lionel C. Briand, Walcelio L. Melo: A Validation of Object-Oriented Design Metrics as Quality
Indicators
[26] Neville I. Churcher, Martin J. Shepperd: Comments on 'A Metrics Suite for Object Oriented Design
[27] Graham, I: Making Progress in Metrics
[28] Klemola, Rilling: A Cognitive Complexity Metric Based on Category Learning
[29] Bandi, Vaishnave, Turk: Predicting Maintenance Performance Using Object-Orientated Design Complexity Metrics.
[30] Rachel Harrison, Steve J. Counsell, Reuben V. Nithi: An Evaluation of the MOOD Set of Object-Oriented Software
Metrics
[31] S Counsell, E Mendes, S Swift: Comprehension of Object-Oriented Software Cohesion: The Empirical Quagmire
[32] Abreu: The MOOD Metrics Set.
[33] Rilling, Klemola: Identifying Comprehension Bottlenecks Using Program Slicing and Cognitive Complexity Metrics
2003

