
focus

0 7 4 0 - 7 4 5 9 / 0 1 / $ 1 0 . 0 0 © 2 0 0 1 I E E E N o v e m b e r / D e c e m b e r 2 0 0 1 I E E E S O F T W A R E 27

Through a systems engineering effort, DPS
divided the system into subsystems, each of
which was later designed by a development
team. I was brought in to help one of the
teams start its part of the project using iter-
ative development, use cases, and object-
oriented design techniques.

Shortly after starting this project, I spent
a week in XP Immersion I, a one-week in-
tensive training class in the techniques and
philosophy of Extreme Programming.1 En-
thused by XP, I talked to the DPS team
about applying some XP practices to our
work. The company had already decided to
try iterative development and OO tech-
niques, departing from the division’s stan-
dard process. They were game for some-
thing different, but how different? We
decided to take the idea of incorporating
XP practices to the director of engineering.

What we were facing
The standard practice in the division was

created in response to past and current
problems. Most of the developers had one
to three years’ experience. The more senior
developers had the role of reviewing and
approving the work of the less experienced
developers. To their credit, the review team
took the formal review process very seri-
ously. They were good at it: they captured
issues and defects on the Web, prepared re-
viewers, and held crisp review meetings.

In the world of Big Design Up Front and
phase containment, these guys were good. I
could end this article right now except for
one problem: all this process added over-
head to the development of software. To de-
sign something, they needed to figure out
the design, document it in Rose, schedule a
review meeting, and distribute materials to

Launching Extreme
Programming at a Process-
Intensive Company

James Grenning, Object Mentor

A company that
has traditional
formal
processes
launched a
project using
many Extreme
Programming
practices. The
author covers
how XP was
proposed to
management,
how the project
seed began and
grew, and some
of the issues
the team faced
during its first
six months.

T
his is a story about starting a project using an adaptation of XP in
a company with a large formal software development process. De-
fined Process Systems is a big company (the name is fictitious). The
division I worked with was developing safety-critical systems and

was building a new system to replace an existing legacy product. The project
was an embedded-systems application running on Windows NT and was part
of a network of machines that had to collaborate to provide services.

reports from the field

review. Then reviewers had to review the
materials and enter issues on the Web, have
a review meeting, document the meeting
outcome, repair the defects and then close
them on the Web, fix documents, and have
the changes reviewed again.

However, all this process work was not
keeping bugs out of the product. Unrealistic
deadlines and surprises late in the project
were taking their toll. Products were deliv-
ered late. Engineers were just getting their
skills to a decent technical depth, but they
were also burning out and heading for sys-
tems engineering or management.

The team struggled with how to begin the
new project. Its requirements were in prose
format and fully understood only by the per-
son who wrote them.

To summarize: the existing process had a
lot of overhead, deadlines were tight, engi-
neers were running away, requirements were
partially defined, and they had to get a project
started. With all these issues, something had to
change. Did they need something extreme like
XP? I believed and hoped XP would help.

Choosing your battles
The DPS culture values up-front require-

ments documents, up-front designs, reviews,
and approvals. Writing the product features
on note cards, not doing any up-front de-
sign, and jumping into coding were not go-
ing to be popular ideas. To people unfamil-
iar with XP, this sounded a lot like hacking.
How did we get by these objections?

Having been introduced to XP, the group
understood what the main objections would
be as we tried to sell XP to the management
team. Like good lawyers, we prepared an-
ticipated questions along with their answers
for our presentation. We expected that the
decision makers would consider some of the
practices dangerous and unworkable at
DPS. The need for documentation was in-
grained in the culture, so we expected con-
cern over XP’s lack of formal documenta-
tion. Can the code be the design? Can we
really build a product without up-front de-
sign? What if there is thrashing while refac-
toring? What about design reviews?

To paraphrase Kent Beck, one of XP’s
originators, “do all of XP before trying to
customize it.” I think that is great advice,
but for this environment we would never
have gotten the okay to mark up the first in-

dex card. We decided to choose our battles.
We needed to get some of the beneficial
practices into the project and not get hurt
by leaving other practices behind. We did
not omit practices that we didn’t feel like
doing; we tried to do as many as we could.
We used the practices and their interactions
as ways to sell around the objections.

We started by identifying the project’s
goals—to build a working product with re-
liable operation and timely delivery, with
enough documentation to enable effective
maintenance (no more, no less), and with
understandable source code. This was as
objectionable as motherhood and apple pie.
The standard process would identify the
same objectives.

We all agreed that a reliable working
product was a critical output of the project.
This was particularly important, as this was
a safety-critical system. A tougher question
was, what was enough documentation? This
was where it got interesting. This applica-
tion was not your typical XP target applica-
tion—it was part of a larger system that mul-
tiple groups were developing at multiple
sites. These other groups were using the
standard, waterfall-style DPS process, not
XP or short-iteration development. We had
a potential impedance mismatch between
the XP team and the rest of the project.

How much documentation?
Proposing no documentation would end

the conversation. We decided to keep the
conversation going and answer a question
with a question. What did we want from
our documentation? We needed

� enough documentation to define the
product requirements, sustain technical
reviews, and support the system’s main-
tainers;

� clean and understandable source code;
and

� some form of interface documentation,
due to the impedance mismatch be-
tween groups.

These answers did not all align with XP out of
the book, but they kept the conversation go-
ing. XP is not antidocumentation; it recog-
nizes that documentation has a cost and that
not creating it might be more cost-effective.
This, of course, violates conventional wisdom.

2 8 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 1

The need for
documentation
was ingrained
in the culture,

so we expected
concern over

XP’s lack
of formal

documentation.

After acknowledging and addressing the
project’s objectives, I led the team through
the cost-of-change pitch from Beck’s Ex-
treme Programming Explained.1 The direc-
tor, the manager, and some senior technol-
ogists agreed that XP addressed many of
their current development problems. They
also thought XP right out of the book
would not work for them. What did we
want to do differently?

Documentation and reviews were going
to be the big roadblocks. We heard, “Re-
quirements on note cards!?!” “I can’t give a
stack of note cards to the test team.” “Bob
in firmware needs the cards too.” “Someone
will lose the cards.” I noticed that the com-
pany’s “standard” process allowed use cases
in the form described by Alistair Cock-
burn.2 This is a text-based method, similar
to user stories but with more details. Other
DPS groups needed to look at the use cases,
so we decided not to fight that battle—we
had enough lined up already. We decided to
use use cases.

Another objection was “We need docu-
mentation for the future generations of en-
gineers that will maintain the product we
are building. We need our senior people to
look at the design to make sure your design
will work.” Our answer was that a good
way to protect future software maintainers
is to provide them with clean and simple
source code, not binders full of out-of-date
paper. Maintainers always go to the source
code; it cannot lie, as documents can. XP re-
lies on the source code being simple and ex-
pressive and uses refactoring to keep it that
way.3 The source code is the most important
part of the design. At some point, the main-
tainers will need a high-level document to
navigate the system.

A follow-on objection was that what one
person thinks is readable source code is not
to another. XP addresses this through pair
programming. If a pair works hard at mak-
ing the source readable, there is a really
good chance that a third programmer who
sees the code will find it readable, too. Plus,
with collective code ownership, anyone can
change the source code if need be.

Another expected objection was that code
was not enough—we needed a documenta-
tion or transition strategy for whenever a
project is put on the shelf or transferred to
another team. Ideally, the documentation

given to the maintainers describes the state
of the software at the time it was shelved or
transferred. This document can and should
be written in a way that avoids needing fre-
quent modification. As maintenance pro-
ceeds, the document will likely be neglected.
Make the document high-level enough so
that the usual maintenance changes and bug
fixes do not affect it. Let the documentation
guide the future developers to the right part
of the code—then they can use the high-
quality, readable, simple source code to
work out the details.

Following this strategy will not result in a
huge document. Remember, you have some
of the best detailed documentation available
in the form of automated unit tests—work-
ing code examples of exactly how to use
each object in the system. XP does not pro-
hibit documentation; just realize it has a cost
and make sure it is worth it. You can plan
documentation tasks into any iteration. The
advice here is to document what you have
built, not what you anticipate building.

The next follow-on objection was that
we’d never do the document at the end of
the project. My reply: So, you would rather
do a little bit at a time, and have to keep
changing and rewriting it? Doesn’t that
sound like it would take a lot of time? It
does! So the management team must stick to
its guns and do the high-level documenta-
tion task at the end of the project. Pay for it
with less time wasted during development.

Reviews
The director did not completely buy into

documenting only at the end of the project
and hence made a final objection: “I still
have my concerns. What if the design is no
good? Do I have to wait until the end of the
project to find out?” Pair programming was
not reason enough for the management team
to give up its review process. The big prob-
lem with DPS’s development process was that
it guaranteed that development would go
slowly. The process went something like this:
create a design, document it in Rose, sched-
ule a review meeting, distribute the materials,
have everyone review the materials, have the
review meeting, collect the issues, fix the is-
sues, maybe do another review, then finally
write some code to see if the design works.
This made sure the cost of change was high.
Because of the safety-critical nature of the

N o v e m b e r / D e c e m b e r 2 0 0 1 I E E E S O F T W A R E 29

Documentation
and reviews

were going to
be the big

roadblocks.

application, the management team was not
willing to give up on reviews.

I proposed a more efficient way to do the
reviews: the ask-for-forgiveness (rather than
ask-for-permission) design process. We let
the development team work for a month at
a time on the system. At the end of the
month, they assembled and reviewed a de-
sign-as-built review package. This took the
review off the critical path, so the review
process did not slow down the team. We
agreed to document the significant designs
within the iteration and review them with
the review team. We gave the remaining is-
sues that the reviewers found to the next it-
eration as stories. The idea here was to
spend a small amount of time in the itera-
tion documenting the design decisions that
month. As it turned out, we really did not
have to ask for forgiveness at all.

It’s not about XP
It’s about building better software pre-

dictably and faster. We compromised on a
number of issues, but we did have agreement
to use most of the XP practices: test-first pro-
gramming, pair programming, short itera-
tions, continuous integration, refactoring,
planning, and team membership for the cus-
tomer. Table 1 describes the XP practices we
used and how we modified them to suit our
needs. We added some process and formality:
use cases, monthly design reviews, and some
documentation. This adaptation of XP was a
significant change in how DPS developed
software, and we hoped to prove it was an
improvement. The director thought XP of-
fered a lot of promise for a better way to
work that could lead to improved quality,
faster development, better predictability, and
more on-the-job satisfaction (“smiles per
hour”). He said we were “making footprints
in the sand.” If we could improve one devel-
opment factor—quality, job satisfaction, pro-
ductivity, or predictability—the director
thought it might be worth doing XP. If we
could improve any two of those factors, he
thought there would be a big payoff.

The problems of poor quality, delivery de-
lays, long delivery cycles, and burned-out en-
gineers plague the software industry. XP
struck a cord with our team leaders. The tech-
niques appeared to address some of the prob-
lems the team was facing, and the focus on
testing and pair programming could help it

build a high-quality product. XP’s iterative na-
ture could help the team determine how fast it
could go and give management the feedback it
needed. So, it’s about getting the job done. XP
is a set of techniques that seemed promising.

Projects can get stalled in the fuzzy front
end.4 This is a problem, especially in water-
fall projects, where you must define all the
requirements prior to starting the design
process. In XP, as soon as you have defined
a couple weeks’ worth of user stories, devel-
opment can start. Think of how hard it is to
shave a month off the end of a project. Now
think of how easy it would be to save that
month just by starting development as soon
as you have identified a month’s worth of
stories. Throughout the rest of the project,
story development occurs concurrently with
story implementation.

The first iteration
The team had three people—a customer

and two developers, including me. We started
by getting the unit test tool CppUnit set up
and integrated with our development envi-
ronment, VC++. This did not take long—the
tools are relatively easy to use.

The project’s customer (our systems engi-
neer) gave us a requirements document. As
we identified a functional requirement, we
wrote it on a card. Each card named a use
case. We did not bother to elaborate the use
cases, just name them; in a few days, we had
identified 125 use cases. Picking the most im-
portant ones was relatively easy using this list.

In XP, the customer chooses the most
valuable user stories and discusses them
with the programmers. We were using use
cases, a similar idea; our customer chose the
most valuable use cases and elaborated
them. For the early iterations, we decided to
ignore use case extensions (which hold the
special cases or variations) and keep the
product definition simple.2 We just assumed
there were no special cases or error cases;
because we were using XP, we believed we
could ignore the details and not be penal-
ized later. We also did not bother using use
case diagrams, because they did not add any
value to the development team. Our main
goal in the first iteration was to build a lit-
tle bit of the product, get some experience,
and build some skill and confidence.

At the beginning of a project, you need to
believe that the design can and will evolve.

3 0 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 1

At the beginning
of a project,
you need to

believe that the
design can and

will evolve.

Otherwise, the desire to do up-front specifica-
tion work will put the team into analysis
paralysis. Knowing that the design can evolve
sets the team free to start building the system
as soon as some functionality is identified.
Simplifying assumptions keep complexity out
of the code, at least temporarily. John Gall
wrote, “A complex system that works is in-
variably found to have evolved from a simple
systems that works.”5 Thus, it really helps to
make these simplifying and scope-limiting de-
cisions in each iteration. This lets the core fea-
tures drive the design.

We had a planning meeting and discussed
the features that were to be included in the
first iteration. My partner and I had OOD
experience but no real XP experience (except
for the week I spent in class). We wanted a
guide to our first iteration, so we spent

about half a day with a whiteboard looking
at design ideas. Because we were unsure of
XP, we were not sure if we could really start
coding without doing some design. We did a
little bit of design, or as we called it a Little
Design Up Front (LDUF). Ron Jeffries calls
this a Quick design session.6

In our LDUF session, we found a group
of collaborating objects we thought would
meet the needs of our first stories. We
worked from hand-drawn copies, not both-
ering with a diagramming or CASE tool. We
knew things would change, and we did not
want to spend our time making it look
pretty. It gave us confidence and a vision of
where we were going.

During the iteration planning meeting
and our LDUF session, we identified some of
the interfaces we needed to support the iter-

N o v e m b e r / D e c e m b e r 2 0 0 1 I E E E S O F T W A R E 31

Table 1
Summary of XP practices used

XP practice Adoption status Our experience

Planning game Partially adopted The team practiced scope limiting, task breakdown, and task sign-up techniques. We
used use cases rather than user stories. We wrote the use cases from an existing
requirements document and stored them in a database.

Small releases Adopted Iterations were one month long each.
Metaphor Not adopted A metaphor had not yet evolved, and we didn’t develop one. Instead, a high-level

design evolved and was recorded in a small set of UML diagrams and explanatory
text. It played the role of our metaphor.

Simple design Adopted The design did not have anticipatory elements. A monthly design-as-built review
let the senior people monitoring the project see the team’s design decisions.

Functional testing Adopted We developed functional tests in a custom scripting language. The tests demonstrated
that the application logic met the customer’s need. However, the team got behind on
automated acceptance tests. This is not recommended.

Test-first design Adopted We wrote the first line of production code using test-first design. We wrote the program in
C++ and used CppUnit 1.5 as our unit test tool.

Refactoring Adopted We refactored regularly, and the design evolved smoothly.
Pair programming Adopted We could develop tests, interfaces, and simulations on our own but used pair programming

to create production code.
Collective ownership Adopted We collectively owned the code. On one occasion, new code that required special

knowledge resulted in a module owned by one programmer. Development slowed on
that part of the system.

Continuous integration Adopted During our first iteration, continuous integration was no problem. As soon as we added a
second pair to the project, the team had integration problems. We quickly learned how
to avoid collisions and do merges.

40-hour week (also known as Adopted The team worked at a sustainable pace. A couple times, we put in overtime to meet the
sustainable pace) iteration goals.
On-site customer Partially adopted A systems engineer acted as the on-site customer. We derived our acceptance tests from the

use cases. The customer was not directly responsible for these tests. The team scared the
customer a couple times by delivering his use cases in less time than it took him to define
them.

Coding standards Adopted The main coding standard was “make the code look like the code that is already there.”
The team used header and C++ file source templates to provide the company-required
comment blocks. The comment blocks were mainly noise that hid the code.

Open workspace Not adopted There was no open workspace. Workstations were in the corners, making pair
programming awkward. The roadblocks to building a team workspace were political.

ation 1 features. These acted as placeholders
for the real hardware. We then added a sim-
ulation of the interface by creating a Mock
Object (see Figure 1).7 This facilitated devel-
opment and also kept volatile entities such
as the database schema, GUI, hardware de-
pendencies, and protocol from creeping into
the application logic. We witnessed an ex-
ample of designing for testability leading to
reduced coupling in the application.

So we sat down to write our first line of
code. We picked a candidate class from our
hand-drawn LDUF diagram and followed
the test-first design process. Figure 2 repre-
sents the test-first design process, XP’s in-
nermost feedback loop. Our first line of
code was a test. The test did not compile.
We fixed the compile. We ran the test. It
failed. We fixed the test. We were finally in
maintenance!

We also established pair-programming
guidelines. We could develop test cases, sim-
ulators, and interface classes on our own
but had to do all other production code in
pairs. The first iteration had significant
downtime, considering only one pair was

working on the project. Meetings were a
real productivity killer. Pair programming
was fun and intense; we were able to stay on
task. If one partner lost track of where we
were going, the other partner quickly re-
synched their efforts. We taught each other
about the tools and learned new skills.

The coding standard is a team agreement
to make the code look the same—it is the
team’s code, so it should all look the same. It
turned out that my partner and I had a com-
patible coding style. As more people joined
the team, we established a self-documenting
coding standard: “Make the new or modified
code look like the code that is already there.”
Cool, a one-line coding standard! However,
there was pressure to use the division’s coding
standard. From a “choosing your battles”
point of view, we gave into using the standard
comment blocks in front of each function.

Later iterations
We planted a seed of functionality at the

center of this subsystem application and
simulated its interactions with its environ-
ment. We brought in new stories that made
the seed grow, incrementally adding new
functionality and complexity. From its sim-
ple beginning of a half dozen classes and a
few simulations, the clean, loosely coupled
design evolved to about 100 classes.

Unit test volume grew. The unit tests saved
us numerous times from unexpected side-ef-
fect defects. We could fix the defects immedi-
ately because we just added the code that
broke the tests.

We created our own acceptance test script-
ing language to drive transactions into the sys-
tem and used text file comparisons of simula-
tion output to confirm system operation. We
were able to design simulations that stressed
the system beyond the limits expected in the
field. Unfortunately, the team got behind in ac-
ceptance testing. I do not recommend this.

Evolutionary design
Evolutionary design relieved a lot of

pressure from the team. We didn’t have to
create the best design of all time for things
we were not quite sure about—only the best
design for what we knew about at that mo-
ment. We made good design decisions one
at a time. Our automated tests and refactor-
ing gave us the confidence that we could
continue to evolve the system.

3 2 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 1

Application
logic

Service Interface
class

Service
implementation

Simulated (mock)
service

implementation

Hardware
API

<<extends>>

Figure 1. Simulating
the interface by
creating a Mock
Object, shown in
Unified Modeling
Language.

Write a
test for new

feature

Compile

Fix
compile
errors

Write
the

code

Run the
test and

see it fail

Run the
test and

see it pass

Refactor
as needed

Figure 2. The
test-first design
process.

Object-oriented design is an important
supporting practice of XP. OO program-
ming languages let you build software in
small independent pieces, a practice that
test-first programming promotes.8

Project manager surprises
Not only were the programmers happy

with their creation, but the project manager
was as well. After the fourth iteration, he said,
“I’d only have three documents by now! In-
stead I have a piece of the system that works!”

The manager discovered another benefit.
Usually a project manager coordinating a
team’s work with other teams spends a lot of
time juggling priorities and figuring out task
dependencies. On the XP team, dependencies
between features were almost nonexistent.
We built features in the order of customer
priority, not internal software framework or-
der dictated by a BDUF (Big Design Up Front).
The team was agile and able to adapt to the
other subsystems’ changing needs.

Building the team
We built the team slowly, while we were

developing skills. We felt we could absorb one
or two people per iteration. We did not let
newcomers take tasks right away, but used
them mainly as pair partners during their first
iteration. Then, as they got to know the sys-
tem and our practices, they started to take on
tasks at the iteration planning meetings. We
didn’t assume that team velocity would in-
crease when we added a new person to the
team—we measure velocity, not predict it.

The DPS way of developing software
made up for programmer inexperience by
having senior engineers review the less ex-
perienced engineers’ work. In XP projects,
you must still address the spread of exper-
tise; for instance, it is critical to have at least
one senior engineer on the team. We don’t
give senior people a big title or special role,
but we need them. They help spread the
wealth of knowledge, and both they and
their pair partners learn.

The end of the story
Unfortunately, I cannot present the story

of how the project completed, because it was
mothballed due to changing market needs.
This is in the spirit of one of XP’s mantras:
Work on the most important thing first. Nev-
ertheless, the team and the managers were

impressed with our results in terms of pro-
ductivity and quality. Because of this project,
two other pilot projects were started.

I n my experience, when the engineers
want XP, the management doesn’t, and
if management wants XP, the engineers

don’t. Where is the trust between manage-
ment and engineering?

To managers: Try XP on a team with
open-minded leaders. Make it okay to try
new things. Encourage the XP practices. Pro-
vide good coaching. Challenge your team to
go against the status quo. Recruit a team that
wants to try XP rather than force a team to
use XP. Make sure the organization sees that
no one will be punished for trying something
different. When hand-picking XP practices,
you might compromise the self-supporting
nature of XP. Try as much of XP as you can.
Iterations are short. Feedback comes often.

To engineers: Develop a sales pitch. Iden-
tify problems that you might solve. Identify
the benefits, identify the risks. Do a pilot
project. Iterations are short. Feedback
comes often.

Acknowledgments
I thank the real client that provided the experience

to write this article (who wished to remain anony-
mous). I also want to thank Chris Biegay and Jennifer
Kohnke for a job well done in helping me prepare this
article. I presented a earlier version of this article at XP
Universe in July 2001.

References
1. K. Beck, Extreme Programming Explained, Addison-

Wesley, Reading, Mass., 1999.
2. A. Cockburn, Writing Effective Use Cases, the Crystal

Collection for Software Professionals, Addison-Wesley,
Reading, Mass., 2000.

3. M. Fowler et al., Refactoring: Improving the Design
of Existing Code, Addison-Wesley, Reading, Mass.,
1999.

4. S. McConnell, Rapid Development, Microsoft Press, Red-
mond, Wash., 1996.

5. J. Gall, Systemantics: How Systems Really Work and
How They Fail, 2nd ed., General Systemantics Press,
Ann Arbor, Mich., 1986.

6. R.E. Jeffries, Extreme Programming Installed, Addison-
Wesley, Reading, Mass., 2001.

7. T. Mackinnon, S. Freeman, and P. Craig, Endo-Testing:
Unit Testing with Mock Objects, XP Examined, Addi-
son-Wesley, Reading, Mass., 2001.

8. R. Martin, “Design Principles and Design Patterns,”
www.objectmentor.com/publications/
Principles%20and%20Patterns.PDF (current 12 Oct.
2001).

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

N o v e m b e r / D e c e m b e r 2 0 0 1 I E E E S O F T W A R E 33

About the Author

James
Grenning
is the director
of consulting
at Object
Mentor and
is currently
practicing
and coaching

Extreme Programming. Areas of interest
are organizational change, software proc-
ess improvement, and the business impact
of agile software development. He helped
create the Manifesto for Agile Software
Development (http://AgileAlliance.org)
and is a signatory. He is also a member of
the ACM. He earned a BS in electrical en-
gineering and computer science from the
University of Illinois, Chicago. Contact
him at Object Mentor, 565 Lakeview Park-
way, Ste. 135, Vernon Hills, IL 60061;
grenning@objectmentor.com.

