
Challenges for Analysts on a Large XP Project

 Dr. Gregory Schalliol
 ThoughtWorks, Inc.
 651 W. Washington Blvd., 6th Floor
 Chicago, IL 60661 USA
 +1 312 373 8661
 glschall@thoughtworks.com

ABSTRACT
The author recounts the fundamental issues encountered by
a team of 8 analysts on a 50-person, multi-year
development project that converted to an XP process.
Those include the importance of comprehending the whole
application in addition to the parts, the art of dividing the
whole into meaningful story cards, the sometimes
complicated role of the customer, and the place of more
traditional analysis. In describing the team’s responses to
these issues, the author suggests what challenges one might
expect for analysis and analysts in large XP projects.

Keywords
Analysis, Analyst Role in XP, Project Size

1 INTRODUCTION
In Kent Beck’s groundbreaking book Extreme
Programming Explained, the word analysis does not appear
in the index, and Beck explicitly warns against trying to use
the methodology for large development projects [1]. I,
however, am an analyst using XP on a large development
project, and the point of this paper is to show that I am not
completely foolish for having played such a role.

The case I wish to discuss is a large J2EE development
project that switched to an XP approach about halfway
through its three-year life. In the 50-person team on this
project, there are about 30 developers, 8 quality assurance
testers, and 8 analysts. The application being built is a
comprehensive, “back-end” leasing system, namely, a
product that would manage everything from the moment a
lease is booked through the eventual disposal of the leased
assets. This includes all aspects of accounts receivable,
asset management, and lease termination, not to mention
the million and one possible ways the laws allow one to
fashion a lease for renting something to someone. At
present, the application consists of over 500,000 lines of
executable code. Our initial customer/user is the leasing
arm of a traditional, Fortune 500 company, but we are
partnering with that first user to offer a more generic
version of the application for the leasing industry as a
whole.

Traditional wisdom would say such a project is not a likely
candidate for an XP approach, and the bulk of my paper

will recount the difficulties we encountered with XP on this
project and the ways we dealt with them. Despite these
difficulties, however, and despite our deviations from some
core XP practices, I wish to show how we experienced
sufficient success to recommend similar methodologies for
large projects in the future.

2 THE MISSING PICTURE OF THE WHOLE
The first challenge I will address is the difficulty we
encountered because we had no holistic picture of the
application available to everyone during the development
process. Although much planning and analysis had been
performed before our project switched to an XP approach,
once it was adopted, our primary roadmap was the set of
story cards we developed and arranged in a large
spreadsheet. At best, a more holistic picture of the
application existed in the minds of those analysts on our
team with extensive experience in the leasing business. But
for those without such experience, which included most
members of the team, the application appeared as a
collection of independent parts without a clear image of
their connection in a whole. We refrained from developing
any more up-front documentation or graphic of the whole
application in order to reap the purported benefit of XP’s
“agility.” The story cards, we thought, would be enough of
a guide.

But the absence of a readily available, holistic picture in
this case contributed to a number of problems. Since
leasing has exceptionally complex business logic, which is
often counter-intuitive, team members without direct
business experience in leasing tended not to understand
how their particular stories fit in with or depended on other
stories in the whole scheme of things. Hence, when they
were charged with implementing new stories, they often
left out tests that would verify proper functioning of the
newer stories in conjunction with the older ones previously
developed. As the iterations accumulated and the
complexity of the system grew, even our analysts with
extensive leasing experience were frustrated by not
knowing sufficiently how the parts were connected so as to
write sufficient tests to verify completed stories. So as you
might expect, new cards were often “finished” in the eyes
of their owners when, in fact, they were not.

 2

When this would become evident, we would, of course,
write new story cards to cover what we had missed. But
there was a general feeling of frustration among card
owners when they discovered they had missed some
dependency, and at some times, minimal inclination to
acknowledge that their card actually included the
dependencies in question. A common response from many
team members to the difficult task of developing and
testing a new bit of functionality in all of its entanglements
with existing functionality was to quip, “Why don’t we just
use the XP approach?” The implication, of course, is that
XP looks at the whole as a collection of atomistic stories,
namely, stories that can be treated as independent of one
another. Whereas that may tend to be the case in some
more simple applications, that was hardly the case in this
one. As the application grew in size and complexity with
each new iteration, the amount of “analysis” required to
compose a sufficient list of tests for each new story
increased tremendously. Developers and analysts both
tended to know the local functionality of a finite number of
stories or sections of code, but hardly anyone had a
comfortable grasp of how it was all connected, despite the
extensive lines of communication among team members.
For new members joining the team after the beginning of
the project, the effort to understand the significance of the
part without knowing the whole was especially daunting.

What was lacking, we think, was some easily accessible
“picture” of the whole so that both developers and analysts
adopting a new story could readily “see” what sort of
connections with other parts they would have to test in
order to complete the card. This would not have had to be
a static picture that was produced before the first line of
code was written. But at the very least, it would have had
to be something that was available in an updated,
cumulative form at the beginning of each iteration so that
story owners could take their bearings and reliably estimate
the scope of the stories and the requisite tests. No one
could conceive of a useable “metaphor” to help “everyone
on the project understand the basic elements and their
relationships” [2], because leasing is too complex a
business to be productively communicated through a
simpler image. A more traditional picture or graphic was
needed and would have helped us tremendously, but
producing and maintaining it would have forced us to
divert resources to the sort of design overhead that XP de-
emphasizes for the sake of agility.

To be sure, some of the difficulties here are the fault of the
nature and size of our project. Less complex business
domains are more easily described with metaphoric images,
and less complex applications will have many fewer
dependencies among stories. Nonetheless, we found
ourselves too easily lulled into the belief that most stories
are independent of one another [3] and that we could find a
useful metaphor for a very complex system. If XP is to be
used for developing complex applications, we suggest some

mechanism for constantly reminding everyone that
functionality divided into distinct stories does not imply the
independence of the stories. This is where a single,
integrated “picture” needs to supplement a spreadsheet of
separable story cards.

3 LEARNING HOW TO DIVIDE AT THE JOINTS
Related to this problem was the difficulty we encountered
dividing the whole into story cards. To borrow an image
from Plato, as well as from your own kitchen, one would
think the division of the whole application into its story
parts would be like cutting a whole chicken into its familiar
pieces. Even though the joints may not be immediately
visible, there are places to do the dividing that are more
appropriate than others. But if you are cutting up the
chicken for the first time, as I recall I once did in my
parents’ kitchen, you may encounter great difficulty
because you do not know where the joints are.

It took us a good deal of practice to find the joints,
particularly because we had many different cues for
locating them. One cue we used was to divide into cards in
ways that worked well in earlier iterations. Although this
tended to work well early on, as the application grew in
size and complexity, it became unreliable. The sort of
functionality that was an independent chunk in iteration
four had become, by iteration fourteen, intertwined with
several other chunks that had been completed in the
meantime. Hence, on more than one occasion, we
discovered we had missed testing one or more interactions
because the list of story cards by itself did not include any
built-in guide to interactions among past and present cards.
Here, again, a holistic picture of the whole application that
would be updated regularly would have helped
tremendously. Without this, we found ourselves devoting
much time to reviewing and rewriting story cards on a
continuous basis in order to try to keep track of new
functional interactions in the card texts. We eventually
devoted one full-time analyst to developing and managing
the story card list with our customer.

Another guide we used to distinguish story cards was to
divide by bits of functionality that would produce some
new, visible business value in the build we would deliver to
the customer at the end of each iteration. The goal of this
was to insure that the customer could see ongoing progress.
But dividing at these “joints” often turned out badly. For
example, we played one story card early on entitled
“Terminate Lease Billing Schedule.” At first glance, this
distinct mechanism seemed like a perfect candidate for a
story card, because it encompassed a clear function that the
customer could understand and actually use when finished.
But as we began to implement it in a one-month iteration,
we discovered that our desire to deliver the whole function
at once led us to badly underestimate the time needed for
the card. Luckily, the analyst for the card had devised her
functional tests in such a way that we were able to divide

 3

up the card into smaller cards along the lines of her
functional tests. Thus, although the customer did not have
the whole of the termination functionality available for use
after one iteration, some testable part of it was finished.
Over the course of the next two iterations, the other, more
granular cards were finished. In the process, however, we
learned our lesson not to divide automatically at joints of
fully useable functionality. But this meant that we had to
prepare our customer to be patient with partially finished
business functions after certain iterations were completed.

From this experience, we perceived a precarious tension
between two goals of XP. On the one hand, iterative
development promotes the impression that the customer
receives some level of a useable application at frequent
intervals and can, as a result, decide to terminate a project
at many stages and still walk away with an application
having business value. On the other hand, the division of
development into iterative chunks often makes it
impossible to deliver functionality that the customer can
actually use for his business at the end of any particular
iteration. In the case of our “Terminate Lease Billing
Schedule” example, the chunk we delivered at the end of
the first iteration could be used and tested, but from a
business perspective, it was valueless without the other
chunks that were completed in subsequent iterations.

In sum, dividing story cards well means not following any
one particular guide too rigidly. To return to the example
of the joints of the chicken, if one insists on having a
chicken quartered, some of the cuts may be easy because
they happen to fall at natural joints, but that last cut through
the breastplate will create much additional toil. We found
that trying to adhere too rigidly to card division by
deliverable functionality or by past experience often
created more toil rather than less.

4 LOOKING BEYOND TODAY’S PART
Despite our awareness of the XP admonition not to
implement beyond what is stated in the current card or
iteration, we found ourselves constantly wondering, and
often cursing, why we should not do just that. This
frustration increased when we finally realized how often we
would have to phase in the development of business
functionality gradually over multiple iterations. If the first
part of this business functionality, implemented in iteration
n, is useless without the additional parts implemented in
iterations n+1, n+2, etc., then why not bend the XP rule
against pro-active design and implement certain things in
iteration n so that you do not need to refactor in iteration
n+2? There was (and still is) general disagreement among
team members as to whether to bend the rule here or not,
but we generally swallowed our frustration, knowing that
refactoring would have to be done, and followed the XP
line.

5 IDENTIFYING OUR CUSTOMER
Our customer/partner for this project devoted a team of its

employees full time to this project, but they were not on-
site with our development team. This fact contributed to
expected problems in the efficiency of communication
between customer and developer, but these were not the
most difficult challenges that confronted us in this area.
Due to the breadth and complexity of the application, it was
impossible for us to have the XP ideal of a customer who
was also an end user. In a typical leasing business, the
person responsible for managing accounts receivable for its
customers is not the person who handles end-of-lease
transactions, nor the person who books the original lease.
The application we were building, however, required a
“customer” who was simultaneously familiar with all of
these dimensions of the business, as well as familiar with
how all of them needed to work together. Moreover, our
customer’s business was itself divided into multiple leasing
divisions, and no two of them had identical business
processes or requirements. To top that off, the way our
customer did business often deviated from typical practices
in the leasing industry as a whole.

This meant, of course, that our customer was in fact several
distinct and different “customers,” each having peculiar
requirements that were not always compatible with one
another. To be sure, much of this was due to the peculiar
circumstance of our trying to build a custom product for
one company and a generic product for an entire industry at
the same time. Nonetheless, we suspect that more often
than not, typical customers for larger applications will be
more multifaceted than the ideal customer who speaks with
a single voice. To handle the competing “voices” among
our various customers, we instituted “issue” cards in
addition to development cards. The issue card would state
the particular business function that needed to be
addressed, and a team of business domain experts from our
team and the customer’s team would meet on a periodic
basis to resolve how the functionality should be developed.
When some agreement was finally reached, the issue card
was then turned into the appropriate story cards. Here
again, though, the complexity of our project added another
weight that reduced the agility of XP on this project.

6 THE ROLE OF THE CUSTOMER
The fact that our customer, despite its multifaceted nature,
should determine the functionality of the system we built
was never an issue, and they felt comfortable in that role.
But when it came time for the customer team to develop the
set of functional tests that would prove the completion of
functionality they had requested, their comfort level was
much lower. Part of this, we think, is due to the prevalent
view among non-technical professionals that computer
applications are complex and difficult, so it’s OK to use
them, but scary to peek at all under the covers. We made
an extraordinary effort to convince our customer’s team
that they needed to not just specify the functionality to
build, but also to develop the tests to verify its completion.
They eventually did so, but only after having relied on

 4

many, many samples from our own analysts for a long
time. They were just not used to the analytic process a
typical software analyst would go through when figuring
out how many tests covering which functions would
constitute a complete verification of this new card.

There was a clear difference, in our mind, between devising
a business scenario and devising a functional test. In the
former case, one makes sure that, say, when you dispose of
a particular asset from inventory, the correct accounting
transactions are performed. In the latter case, one verifies
everything tested in the business scenario, but also verifies
the proper functioning of all negative and atypical actions
that could occur in the process, widget action on screens,
behind-the-scenes dependencies, etc. Our customer team
did not need much coaching to provide us with the business
scenarios, but the functional test itself, in all of its detail,
required us to do much more training with the customer
than we had anticipated. In this respect, we think the
typical description of the ideal XP customer working
directly with the developer, although surely true in some
cases, is not typical and, hence, underestimates the need for
the traditional analyst intermediary.

7 IS THERE A PLACE FOR ANALYSIS IN XP?
From the experiences I have recounted above, it should be
apparent that our use of XP on a large and complex
development project forced us to institute roles and
procedures that are not clearly envisioned in the common
list of XP practices and roles. Hence, it made sense for us
to include a team of traditional analysts in this project to fill
these and other related roles. Of particular importance in
this case was the complexity of the business logic in this
particular application. The customer’s team on this project
provided considerable guidance in defining what was built,
but they needed assistance from business experts with a
broader perspective and traditional software analysts in
order to articulate clearly and completely in a set of
functional tests what the system needed to do.

To facilitate the avoidance of disagreements within our
multifarious customer, and to articulate more completely
the dependencies among parts described in story cards, we
needed to produce more traditional artifacts in addition to
the story cards and functional tests. For each story card, we
developed a separate, more detailed description of the
functionality involved, its business purpose, its impact on
other parts of the application already developed, and any
additional specifics needed to direct the developers. This
document was accessible on-line to all parties involved and
often proved helpful in resolving misunderstandings or
uncertainties that could not be determined by examining the
story card by itself. Were we to initiate a similar project of
this size in the future, I suspect we would devote even more
manpower to the production of more traditional artifacts of
analysis so that the XP practices we found productive could
be employed once again successfully at this scale.

8 WHERE XP WORKED WELL
Despite the various ways in which we found XP in need of
supplemental procedures and artifacts for our unusual
project, we came to appreciate many of its basic practices.
The fact that we were forced to articulate and develop the
functional tests at the beginning of the development process
in an iteration was very healthy. Too often, when
functionality is designed first and tests devised only much
later after development, there is a disconnect between the
original design and the tests. By reducing this time to a
short iteration, there is less likelihood for that discrepancy
to arise.

The frequency of deadlines in the iterative process tended
to keep us focused and productive on the particular cards
we had adopted. We tried to find the optimal iteration
length for our project, starting first with one-month
iterations (which seemed a bit too long), and then changing
to two-week iterations (which seemed a bit too short). Our
individual focus was also encouraged greatly by the fact
that owners of tasks were responsible for estimating those
same cards. It was much more difficult for someone to
acknowledge that something could not meet a deadline
when that confession would also imply the person has
estimated the task badly. We soon learned that task
estimation and ownership needs to extend not just to
developers, but to all roles in the project.

The practice of giving individuals ownership of their own
problems also made it possible for several individuals to
employ their peculiar intelligences to solve many problems.
One case, in particular, stands out in this regard. We
attempted to implement one card dealing with a very
complicated piece of functionality during iteration six, and
it soon became apparent that the original strategy we had
developed would be cumbersome and, in the end, perhaps
unacceptable. Seeing this, we assigned time to one of our
business domain analysts to “think through” the card again
and propose an alternative way of implementing the
functionality. He figured out a substantially more elegant
and efficient way to implement the functionality on the
card: something that would not have been possible had we
felt obliged to implement exactly what we had been told to
do.

This case led us to introduce “analysis” cards in addition to
regular development cards. For particularly complex bits
of functionality, typically with many dependencies, we
would estimate analysis time for someone during an
iteration in order to flesh out carefully all of the test cases
that would be needed for implementing the card in
question. During the subsequent iteration, that card would
be played like any other card. The amount of time required
to think through a sufficient list of functional tests for cards
varied greatly from card to card, so we had to implement
provisions like this to accommodate those differences.

 5

9 CONCLUSION
From our experience on this development project, we do
not mean to imply that XP fails to work for large and
complex application and development. Rather, we wish
only to point out that many of the basic practices of XP are
quite useful in such projects, but they need to be
supplemented with some “heavier” methodology in order to
work well. A list of story cards, if it becomes too large and
complicated, needs to be supplemented with a holistic
“picture” to insure that the cards are managed, updated, and
ordered well. More importantly, one must keep a careful
watch on the dependencies among stories as the list and
complexity of story cards grow. Metaphors can go so far,
but the complexity they can communicate is limited. A
“customer,” if it has many facets, needs someone to
facilitate communication among the camps, manage the
reconciliation of incompatible voices, and provide business
expertise from a global perspective. All of these examples
point to the fact that one should be prepared for reduced
“agility” from XP, as well as unforeseen challenges, when
it is implemented for particularly complex or large
application development.

ACKNOWLEDGEMENTS
It was my ThoughtWorks colleague Martin Fowler who
encouraged me to communicate this experience to a wider
audience, and it was my fellow analyst, Terri Hollar, who
helped me articulate parts of that experience. I am indebted
to both for their assistance, as well as to the rest of my
colleagues on this project at ThoughtWorks for their
continual support.

REFERENCES
1. Beck, Kent. Extreme Programming Explained:

Embrace Change (Reading MA, 2000), Addison-
Wesley, 157, 181-190.

2. Beck (2000), 56.

3. Beck, Kent and Fowler, Martin. Planning Extreme
Programming (Boston, 2001), Addison-Wesley, 47,
63-64.

