
Design and Architecture in
Industry

The agile viewpoint

Ben Stopford
Thoughtworks

What I’ll be covering

• The importance of expecting designs to
change.

• The softer side of architecture needed to
successfully guide a team.

• Methods for guiding design using patterns
and frameworks.

• Problems that can occur with design.

Why do we need to worry about
Architecture and Design?

• Software evolves over time.
• Unmanaged change leads to spaghetti

code bases where classes are highly
coupled to one another.

• This makes them brittle and difficult to
understand

So how to we avoid this?

We Architect our System

… with UML

AND…

We get to spot problems early on
in the project lifecycle.

Why is that advantageous?

Because it costs less

Low cost of
change early
in lifecycle

So we have a plan for how to
build our application before we

start coding.

All we need to do is follow the
plan!!

Well this is what we used to
do…

…but problems kept cropping
up…

It was really hard to get the design
right up front.

• The problems we face are hard.
• The human brain is bad at predicting all the

implications of a complex solution up front.
• When we came to implementing solutions,

our perspective would inevitably change and
so would our design.

And then…

…when we did get the design
right…

…the users would go and change
the requirements and we’d have

to redesign our model.

Ahhh, those pesky users, why can’t
they make up their minds?

So…

…in summary…

We find designing up front
hard…

...and a bit bureaucratic

…and when we do get it right the
users generally go and change

the requirements…

…and it all changes in the next
release anyway.

So are we taking the right approach

Software is supposed to be soft.

That means it is supposed to be
easy to change.

But is it?

• Small application are easy to change.
• Large applications generally are not.

So is fixing the architecture
and design up front the right

way to do it?

Does the cost curve have to look
like this?

Can we design our systems so
that we CAN change them later

in the lifecycle?

The Cost of Change in an agile
application

How

By architecting and designing
for change

** But not designing for any specific changes

*** And writing lots and lots of tests

Agile Development facilitates this

Code Base

Test

Test

Test

Dynamic Design

• Similar to up-front design except that it is
done little and often.

• Design just enough to solve the problem
we are facing now, and NO MORE.

• Refactor it later when a more complex
solution is needed.

This means that your system’s
design is constantly evolving.

Making our key values:

• Changeability – because most
software projects involve
change.

• Comprehensibility – because
the easier it is to understand,
the easier it is to change.

So what does this imply for the
Architect?

Architecture becomes about
steering the application so that it
remains easy to understand and

easy to change.

With everyone being
responsible for the design.

So the architects role becomes
about steering the applications

design through others.

Shepherding the team!

Shepherding the team

• People will always develop software in
their own way. You can’t change this.

• You use the techniques you know to keep
the team moving in the right direction.

• Occasionally one will run of in some
tangential direction and when you see this
you move them back.

Timeline

Set-up
Architecture

Push patterns and reuse

Watch for architectural breakers

Amend
Architecture

Aims:
–Encourage preferred patterns.
–Encourage reuse.

Tools:
–Communication
–Frameworks

1. Architecture through reuse

• Good OO Design
• Common Libraries
• A Domain Model

The importance of a Domain Model

• Simulate the business problem in
software.

• Separate from any technically implied
dependencies.

2. Architecture through
patterns

Separation of Concerns:
Layers and Services

Example

GUI Data Access

•Scaling such a solution is problematic?

•Untangling the database code from the UI code makes
each easier to understand. This might not matter for small
applications but the effect is very noticeable as the
application grows.

Model-View-Controller

A Real SOA and Layered System

Rightmove.com

Business Services Communicating
Asynchronously over a Bus

Persistence of Hips

Client Contacting Service - Services can only communicate
over the bus. No Point to point
communication (why).
- Communication via neutral protocol

SOA

• Architectural Pattern (Functional)
• Design Pattern (Technical)

SOA as an Architectural Pattern

Provides separation between the
implementations of different business
services giving:
– Scalability
– Fungibility

SOA as a Design Pattern

• Encourages separation of responsibilities
into the different services.

• Forces communication between services
to be at a business level => Promotes tight
encapsulation.

• Asynchronous communication promotes
statelessness of services.

So how does SOA compare to a Component
Based Model

• CBS using Corba is very similar:
– Breakdown into component services
– Language neutral protocol

• The key differences are:
– Making services valid at a business level with the aim

being to integrate across the enterprise (mapping
tools can be used to ensure the services match the
business model).

– Communication only through business significant
messages – this has interesting architectural
implications.

Layers and Tiers

• Layers/Tiers provide a pattern that
promotes separation between technical
responsibilities.

• Services provide a pattern that promotes
separation between functions at a
business level.

Layers vs. Services

• Services are generally wrapped behind
well defined and controlled interfaces.

• Conversely the separation between layers
is generally logical.

Aside – Bob’s Website

Client

Application Layer

DB

Javascipt
Calculation

Which way
is best??

Client

Application Layer

DB

Server
Calculation

Layered Architecture
HIP UI

HIP Service

Message Bus

Data Layer

Transformation Layer

Business Layer

Application Layer

Presentation Layer

The presentation layer is for pixel-
painting.
All logic should be delegated elsewhere.

The application layer is the glue between
presentation and business.
It is where MVC controllers live. Logic
here is very light – simple field-level
validation is as clever as it gets (e.g. “is it
a date?”, “is it a number?”)

The business layer is a simulation of the
business problem.
It has no dependencies on the UI or on
other technologies. Most importantly, it is
isolated from persistence!
(Similar to the Service Layer in RM+)

The transformation layer is the glue
between business logic and non-UI
technologies.
It maps information between the
business logic and some underlying
tech.
e.g. It maps HIPs into messages for the
bus and into records for the database.The data layer is represented by
infrastructural tech. The RDBMS, and
code to connect to the WebMethods bus
sit here.

Web Pages

Controllers

Domain Model

Technology Abstraction
& Mapping

Tech infrastructure

HIP DB

What is the point of having
layers?

Separation of Technical Concerns

Example: Is a transformation layer
a good idea?

Application Layer

Transformation Layer

Persistence Layer

Database

Domain Object

Table

ORM

Domain Object

Record Object

Table

Mapper

ORM

UI Layer

Application
Layer

Technical
Decomposition
into layering

Trade
Service

Data
Service

Pricing
Service

Functional Decomposition into Services

Domain Model,
Utilities etc

Reuse across
services and
potentially layers

Application
separation and
crosscutting

Questions

• Is reuse across layers and services a good
idea or does it break the encapsulation of
those services or layers?

• What about if the services span multiple
teams?

3. Use of frameworks to
enforce design principals

For Example

• Inversion of Control and Spring,
Picocontainer

• Functional separation with OO, CBS, SOA
• Layering with Hibernate, IBatis, Webwork

Aside: What is wrong with the
singleton pattern?

It’s very hard to test applications
when singletons are around

public void foo()
{

x = Fred.getInstance().getX();
…
y = George.getInstance().getY();
…
z = Arthur.getInstance().getZ();

}

Dependency Injection

public void foo(X x, Y y, Z z)
{

…
}

Spring

• Inversion of control/Dependency injection
makes code easy to test.

• Helps you organise your middle tier.
• Get rid of (the static aspects of) singletons.

Config.xml – Define Dependencies

<bean id="CurrencySpreadRecordDAO"
class="com.dkib.gf.dao.CurrencySpreadRecordDAOImpl">

<property name="sqlMapClient" ref="sqlMapClient"/>
</bean>

<bean id="MarketDataDao"
class="com.dkib.gf.dao.MyMarketDataFacade">

<constructor-arg index="0" ref="DrivenPairRecordDAO"/>
<constructor-arg index="1" ref="VolSmileRecordDAO"/>
<constructor-arg index="2" ref="SpotRateRecordDAO"/>
<constructor-arg index="3" ref="VolSpreadRecordDAO"/>
<constructor-arg index="4" ref="CurrencySpreadRecordDAO"/>

</bean>

Spring performs construction
public class MyMarketDataFacade implements

MarketDataFacade {
…

public MyMarketDataFacade(
DrivenPairRecordDAO drivenPairsDAO,
VolSmileRecordDAO volSmileRecordDAO,
SpotRateRecordDAO spotRateRecordDAO,
VolSpreadRecordDAO volSpreadRecordDAO,

CurrencySpreadRecordDAO
currencySpreadRecordDAO) {

…

Look Up Service
public class DataLayer {

private final ApplicationContext ctx;

public DataLayer() {
ctx = new ClassPathXmlApplicationContext("config.xml");

}
public MarketDataFacade getMarketDataFacade() {

return (MarketDataFacade) ctx.getBean("MarketDataDao");
}

}

But…

These frameworks are not silver bullets.
They each have their own problems.

Avoiding Architectural
Breakers

Course grained decisions that are hard
to refactor away from. For example
embedding business logic in a UI.

Summary So Far

• Software is soft so design is an evolving
process not a prescribed one.

• Architecture is about controlling the limits
of design.

• Architecture is also about pushing a group
of developers in a certain direction. It is a
soft skill as much as a technical one.

• Patterns and frameworks are the tools the
architect uses to do this.

How design can go wrong

The overuse of design
patterns

=> Obtuse code

Fragile Base Class Problem

• Why does this occur?

A

B C

Solutions

• Favour composition over inheritance.
• Superclasses should call subclasses not

the other way around

Service Duplication Problem

UI Layer

Application
Layer

Technical
Decomposition
into layering

Trade
Service

Data
Service

Pricing
Service

Functional Decomposition into Services

Domain Model,
Utilities etc

Command/Executor Problem

Solution

Be wary of functional
decomposition and its tendency to

push you away from reuse

In Conclusion

• Comprehensibility is the goal of design
(followed by changeability).

• An architects role is primarily one of
communicating and coordinating a
common vision.

• If design is to be dynamic unit tests are
mandatory.

And finally…

Never listen to an architect who
does not write code.

Conversely if you are an architect,
make sure you get your hands

dirty.

